Equivariant bundle gerbes
dc.contributor.author | Murray, M. | |
dc.contributor.author | Roberts, D. | |
dc.contributor.author | Stevenson, D. | |
dc.contributor.author | Vozzo, R. | |
dc.date.issued | 2017 | |
dc.description.abstract | We develop the theory of simplicial extensions for bundle gerbes and their characteristic classes with a view towards studying descent problems and equivariance for bundle gerbes. Equivariant bundle gerbes are important in the study of orbifold sigma models. We consider in detail two examples: the basic bundle gerbe on a unitary group and a string structure for a principal bundle. We show that the basic bundle gerbe is equivariant for the conjugation action and calculate its characteristic class; we show also that a string structure gives rise to a bundle gerbe which is equivariant for a natural action of the String 2-group. | |
dc.description.statementofresponsibility | Michael K. Murray, David Michael Roberts, Danny Stevenson, and Raymond F. Vozzo | |
dc.identifier.citation | Advances in Theoretical and Mathematical Physics, 2017; 21(4):921-975 | |
dc.identifier.doi | 10.4310/ATMP.2017.v21.n4.a3 | |
dc.identifier.issn | 1095-0761 | |
dc.identifier.issn | 1095-0753 | |
dc.identifier.orcid | Murray, M. [0000-0003-3713-9623] | |
dc.identifier.orcid | Roberts, D. [0000-0002-3478-0522] | |
dc.identifier.orcid | Stevenson, D. [0000-0003-4399-7632] | |
dc.identifier.uri | http://hdl.handle.net/2440/114635 | |
dc.language.iso | en | |
dc.publisher | International Press | |
dc.relation.grant | http://purl.org/au-research/grants/arc/DP120100106 | |
dc.relation.grant | http://purl.org/au-research/grants/arc/DP130102578 | |
dc.rights | Copyright status unknown | |
dc.source.uri | https://doi.org/10.4310/atmp.2017.v21.n4.a3 | |
dc.title | Equivariant bundle gerbes | |
dc.type | Journal article | |
pubs.publication-status | Published |