Equivariant bundle gerbes

dc.contributor.authorMurray, M.
dc.contributor.authorRoberts, D.
dc.contributor.authorStevenson, D.
dc.contributor.authorVozzo, R.
dc.date.issued2017
dc.description.abstractWe develop the theory of simplicial extensions for bundle gerbes and their characteristic classes with a view towards studying descent problems and equivariance for bundle gerbes. Equivariant bundle gerbes are important in the study of orbifold sigma models. We consider in detail two examples: the basic bundle gerbe on a unitary group and a string structure for a principal bundle. We show that the basic bundle gerbe is equivariant for the conjugation action and calculate its characteristic class; we show also that a string structure gives rise to a bundle gerbe which is equivariant for a natural action of the String 2-group.
dc.description.statementofresponsibilityMichael K. Murray, David Michael Roberts, Danny Stevenson, and Raymond F. Vozzo
dc.identifier.citationAdvances in Theoretical and Mathematical Physics, 2017; 21(4):921-975
dc.identifier.doi10.4310/ATMP.2017.v21.n4.a3
dc.identifier.issn1095-0761
dc.identifier.issn1095-0753
dc.identifier.orcidMurray, M. [0000-0003-3713-9623]
dc.identifier.orcidRoberts, D. [0000-0002-3478-0522]
dc.identifier.orcidStevenson, D. [0000-0003-4399-7632]
dc.identifier.urihttp://hdl.handle.net/2440/114635
dc.language.isoen
dc.publisherInternational Press
dc.relation.granthttp://purl.org/au-research/grants/arc/DP120100106
dc.relation.granthttp://purl.org/au-research/grants/arc/DP130102578
dc.rightsCopyright status unknown
dc.source.urihttps://doi.org/10.4310/atmp.2017.v21.n4.a3
dc.titleEquivariant bundle gerbes
dc.typeJournal article
pubs.publication-statusPublished

Files