Modelling and genetic dissection of staygreen under heat stress

Files

hdl_103718.pdf (1.12 MB)
  (Published version)

Date

2016

Authors

Pinto, R.
Lopes, M.
Collins, N.
Reynolds, M.

Editors

Advisors

Journal Title

Journal ISSN

Volume Title

Type:

Journal article

Citation

Theoretical and Applied Genetics, 2016; 129(11):2055-2074

Statement of Responsibility

R. Suzuky Pinto, Marta S. Lopes, Nicholas C. Collins, Matthew P. Reynolds

Conference Name

Abstract

Staygreen traits are associated with heat tolerance in bread wheat. QTL for staygreen and related traits were identified across the genome co-located with agronomic and physiological traits associated to plant performance under heat stress. Plant chlorophyll retention-staygreen-is considered a valuable trait under heat stress. Five experiments with the Seri/Babax wheat mapping population were sown in Mexico under hot-irrigated environments. Normalized difference vegetation index (NDVI) during plant growth was measured regularly and modelled to capture the dynamics of plant greenness decay, including staygreen (Stg) at physiological maturity which was estimated by regression of NDVI during grainfilling. The rate of senescence, the percentage of plant greenness decay, and the area under the curve were also estimated based on NDVI measurements. While Stg and the best fitted curve were highly environment dependent, both traits showed strong (positive for Stg) correlations with yield, grainfilling rates, and extended grainfilling periods, while associations with kernel number and kernel weight were weak. Stg expression was largely dependent on rate of senescence which was related to the pattern of the greenness decay curve and the initial NDVI. QTL analyses revealed a total of 44 loci across environments linked to Stg and related traits, distributed across the genome, with the strongest and most repeatable effects detected on chromosomes 1B, 2A, 2B, 4A, 4B and 7D. Of these, some were common with regions controlling phenology but independent regions were also identified. The co-location of QTL for Stg and performance traits in this study confirms that the staygreen phenotype is a useful trait for productivity enhancement in hot-irrigated environments.

School/Discipline

Dissertation Note

Provenance

Description

Access Status

Rights

© The Author(s) 2016 This article is published with open access at Springerlink.com. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

License

Grant ID

Call number

Persistent link to this record