Generalising a characterisation of Hermitian curves

dc.contributor.authorBarwick, S.
dc.contributor.authorQuinn, C.
dc.date.issued2001
dc.descriptionThe original publication can be found at www.springerlink.com
dc.description.abstractThis article proves a characterisation of the classical unital that is a generalisation of a characterisation proved in 1982 by Lefèvre-Percsy. It is shown that if U is a Buekenhout-Metz unital with respect to a line l∞ in PG(2, q²) such that a line of PG(2, q²) not through U Ո l∞ meets U in a Baer subline, then U is classical. An immediate corollary is that if U is a unital in PG(2, q²) such that U is Buekenhout-Metz with respect to two distinct lines, then U is classical.
dc.description.statementofresponsibilityS. G. Barwick and Catherine T. Quinn
dc.identifier.citationJournal of Geometry, 2001; 70(1-2):1-7
dc.identifier.doi10.1007/PL00000978
dc.identifier.issn0047-2468
dc.identifier.issn1420-8997
dc.identifier.orcidBarwick, S. [0000-0001-9492-0323]
dc.identifier.urihttp://hdl.handle.net/2440/3605
dc.language.isoen
dc.publisherBirkhauser Verlag Ag
dc.source.urihttp://www.springerlink.com/content/u7ywq8r8jc45hku6/
dc.subjectDesarguesian plane, Hermitian curve, unital
dc.titleGeneralising a characterisation of Hermitian curves
dc.typeJournal article
pubs.publication-statusPublished

Files