Generalising a characterisation of Hermitian curves
dc.contributor.author | Barwick, S. | |
dc.contributor.author | Quinn, C. | |
dc.date.issued | 2001 | |
dc.description | The original publication can be found at www.springerlink.com | |
dc.description.abstract | This article proves a characterisation of the classical unital that is a generalisation of a characterisation proved in 1982 by Lefèvre-Percsy. It is shown that if U is a Buekenhout-Metz unital with respect to a line l∞ in PG(2, q²) such that a line of PG(2, q²) not through U Ո l∞ meets U in a Baer subline, then U is classical. An immediate corollary is that if U is a unital in PG(2, q²) such that U is Buekenhout-Metz with respect to two distinct lines, then U is classical. | |
dc.description.statementofresponsibility | S. G. Barwick and Catherine T. Quinn | |
dc.identifier.citation | Journal of Geometry, 2001; 70(1-2):1-7 | |
dc.identifier.doi | 10.1007/PL00000978 | |
dc.identifier.issn | 0047-2468 | |
dc.identifier.issn | 1420-8997 | |
dc.identifier.orcid | Barwick, S. [0000-0001-9492-0323] | |
dc.identifier.uri | http://hdl.handle.net/2440/3605 | |
dc.language.iso | en | |
dc.publisher | Birkhauser Verlag Ag | |
dc.source.uri | http://www.springerlink.com/content/u7ywq8r8jc45hku6/ | |
dc.subject | Desarguesian plane, Hermitian curve, unital | |
dc.title | Generalising a characterisation of Hermitian curves | |
dc.type | Journal article | |
pubs.publication-status | Published |