Sarcoptic mange changes bacterial and fungal microbiota of bare-nosed wombats (Vombatus ursinus)

Files

hdl_136682.pdf (1.8 MB)
  (Published version)

Date

2022

Authors

Næsborg-Nielsen, C.
Eisenhofer, R.
Fraser, T.A.
Wilkinson, V.
Burridge, C.P.
Carver, S.

Editors

Advisors

Journal Title

Journal ISSN

Volume Title

Type:

Journal article

Citation

Parasites and Vectors, 2022; 15(1):323-1-323-10

Statement of Responsibility

Christina Næsborg, Nielsen, Raphael Eisenhofer, Tamieka A. Fraser, Vicky Wilkinson, Christopher P. Burridge and Scott Carver

Conference Name

Abstract

Background: Sarcoptes scabiei is globally distributed and one of the most impactful mammalian ectoparasites. Sarcoptic mange, caused by infection with S. scabiei, causes disruption of the epidermis and its bacterial microbiota, but its effects on host fungal microbiota and on the microbiota of marsupials in general have not been studied. Here, we (i) examine bacterial and fungal microbiota changes associated with mange in wild bare-nosed wombats (BNWs) and (ii) evaluate whether opportunistic pathogens are potentiated by S. scabiei infection in this species. Methods: Using Amplicon Sequencing of the 16S rRNA and ITS2 rDNA genes, we detected skin microbiota changes of the bare-nosed wombat (Vombatus ursinus). We compared the alpha and beta diversity among healthy, moderate, and severe disease states using ANOVA and PERMANOVA with nesting. Lastly, we identified taxa that differed between disease states using analysis of composition of microbes (ANCOM) testing. Results: We detected significant changes in the microbial communities and diversity with mange in BNWs. Severely affected BNWs had lower amplicon sequence variant (ASV) richness compared to that of healthy individuals, and the microbial communities were significantly different between disease states with higher relative abundance of potentially pathogenic microbial taxa in mange-affected BNWs including Staphylococcus sciuri, Corynebacterium spp., Brevibacterium spp., Brachybacterium spp., and Pseudogymnascus spp. and Debaryomyces spp. Conclusion: This study represents the first investigation of microbial changes in association with sarcoptic mange in a marsupial host, as well as the first investigation of fungal microbial changes on the skin of any host suffering from sarcoptic mange. Our results are broadly consistent with bacterial microbiota changes observed in humans, pigs, canids, and Iberian ibex, suggesting the epidermal microbial impacts of mange may be generalisable across host species. We recommend that future studies investigating skin microbiota changes include both bacterial and fungal data to gain a more complete picture of the effects of sarcoptic mange.

School/Discipline

Dissertation Note

Provenance

Description

Published online: 13 September 2022

Access Status

Rights

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

License

Call number

Persistent link to this record