Patch dynamics for macroscale modelling in one dimension

dc.contributor.authorBunder, J.
dc.contributor.authorRoberts, A.
dc.contributor.conferenceEngineering Mathematics and Applications Conference (4 Dec 2011 - 7 Dec 2011 : Australia)
dc.contributor.departmentFaculty of Engineering, Computer & Mathematical Sciences
dc.date.issued2012
dc.descriptionProceedings of the 10th Biennial Engineering Mathematics and Applications Conference (EMAC2011) held at University Technology Sydney in December 2011
dc.description.abstractWe discuss efficient macroscale modelling of microscale systems using patch dynamics. This pilot study effectively homogenises microscale varying diffusion in one dimension. The `equation free' approach requires that the microscale model be solved only on small spatial patches. Suitable boundary conditions ensure that these patches are well coupled. By centre manifold theory, an emergent closed model exists on the macroscale. Patch dynamics systematically approximates this macroscale model. The modelling is readily adaptable to higher dimensions and to reaction-diffusion equations.
dc.identifier.citationAustralia and New Zealand Industrial and Applied Mathematics (ANZIAM) Journal, 2012, vol.53, iss.SUPPL, pp.280-295
dc.identifier.doi10.21914/anziamj.v53i0.5074
dc.identifier.issn1446-8735
dc.identifier.issn1446-8735
dc.identifier.orcidBunder, J. [0000-0001-5355-2288]
dc.identifier.orcidRoberts, A. [0000-0001-8930-1552]
dc.identifier.urihttp://hdl.handle.net/2440/71981
dc.language.isoen
dc.publisherCambridge University Press
dc.rights© Austral. Mathematical Soc. 2012.
dc.source.urihttp://journal.austms.org.au/ojs/index.php/ANZIAMJ/article/view/5074
dc.subjectmultiscale modelling
dc.subjectpatch dynamics
dc.subjectcoupled boundary conditions
dc.subjectdifference equations
dc.titlePatch dynamics for macroscale modelling in one dimension
dc.typeConference paper
pubs.publication-statusPublished

Files