Invariant measure and a limit theorem for some generalized Gauss maps
dc.contributor.author | Chakraborty, Partha Sarathi | en |
dc.contributor.author | Dasgupta, A. | en |
dc.contributor.school | School of Mathematical Sciences | en |
dc.date.issued | 2004 | en |
dc.description | The original publication can be found at www.springerlink.com | en |
dc.description.abstract | Continued fractions w.r.t. a specified class of numbers is considered. The invariant measures of the corresponding transformations are identified connecting the continued fractions with geodesics on the upper half plane. A problem of convergence in distribution of sums of the coefficients of the continued fraction is also considered. | en |
dc.description.statementofresponsibility | P. S. Chakraborty and A. Dasgupta | en |
dc.identifier.citation | Journal of Theoretical Probability, 2004; 17 (2):387-401 | en |
dc.identifier.doi | 10.1023/B:JOTP.0000020700.45630.5c | en |
dc.identifier.issn | 0894-9840 | en |
dc.identifier.uri | http://hdl.handle.net/2440/46221 | |
dc.language.iso | en | en |
dc.publisher | Kluwer / Plenum | en |
dc.subject | Continued fraction; geodesic flow; invariant measure; limit theorems | en |
dc.title | Invariant measure and a limit theorem for some generalized Gauss maps | en |
dc.type | Journal article | en |