Visual tracking via weakly supervised learning from multiple imperfect oracles

dc.contributor.authorZhong, B.
dc.contributor.authorYao, H.
dc.contributor.authorChen, S.
dc.contributor.authorJi, R.
dc.contributor.authorChin, T.
dc.contributor.authorWang, H.
dc.date.issued2014
dc.description.abstractAbstract not available
dc.description.statementofresponsibilityB. Zhong, H. Yao, S. Chen, R. Ji, T.J. Chin, H. Wang
dc.identifier.citationPattern Recognition, 2014; 47(3):1395-1410
dc.identifier.doi10.1016/j.patcog.2013.10.002
dc.identifier.issn0031-3203
dc.identifier.issn1873-5142
dc.identifier.urihttp://hdl.handle.net/2440/102219
dc.language.isoen
dc.publisherElsevier
dc.rightsCrown Copyright © 2013 Published by Elsevier Ltd. All rights reserved
dc.source.urihttp://www.sciencedirect.com/science/article/pii/S0031320313004081
dc.subjectVisual tracking; Weaklysupervisedlearning; Information fusion; Online learning; Adaptiveappearancemodel; Drift problem; Online evaluation
dc.titleVisual tracking via weakly supervised learning from multiple imperfect oracles
dc.typeJournal article
pubs.publication-statusPublished

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
RA_hdl_102219.pdf
Size:
2.81 MB
Format:
Adobe Portable Document Format
Description:
Restricted Access