The smooth Hom-stack of an orbifold
dc.contributor.author | Roberts, D. | |
dc.contributor.author | Vozzo, R. | |
dc.contributor.editor | Wood, D. | |
dc.contributor.editor | de Gier, J. | |
dc.contributor.editor | Praeger, C. | |
dc.contributor.editor | Tao, T. | |
dc.date.issued | 2017 | |
dc.description.abstract | For a compact manifold M and a differentiable stack X presented by a Lie groupoid X, we show the Hom-stack Hom.M;X/ is presented by a Frechet- Lie groupoid Map.M; X/ and so is an infinite-dimensional differentiable stack. We further show that if X is an orbifold, presented by a proper etale Lie groupoid, then Map.M; X/ is proper etale and so presents an infinite-dimensional orbifold. | |
dc.description.statementofresponsibility | David Michael Roberts and Raymond F. Vozzo | |
dc.identifier.citation | 2016 MATRIX Annals, 2017 / Wood, D., de Gier, J., Praeger, C., Tao, T. (ed./s), vol.1, pp.43-47 | |
dc.identifier.doi | 10.1007/978-3-319-72299-3_3 | |
dc.identifier.isbn | 9783319722986 | |
dc.identifier.orcid | Roberts, D. [0000-0002-3478-0522] | |
dc.identifier.uri | http://hdl.handle.net/2440/115189 | |
dc.language.iso | en | |
dc.publisher | Springer, Cham | |
dc.publisher.place | Switzerland | |
dc.relation.grant | http://purl.org/au-research/grants/arc/DP120100106 | |
dc.relation.grant | http://purl.org/au-research/grants/arc/DP130102578 | |
dc.relation.ispartofseries | MATRIX Book Series | |
dc.rights | © Springer International Publishing AG, part of Springer Nature 2018. Chapter ‘The smooth Hom-stack of an orbifold’ is published with kind permission of © David Michael Roberts and Raymond Vozzo 2018. All Rights Reserved. | |
dc.source.uri | https://doi.org/10.1007/978-3-319-72299-3_3 | |
dc.subject | math.DG | |
dc.subject | math.CT | |
dc.title | The smooth Hom-stack of an orbifold | |
dc.type | Book chapter | |
pubs.publication-status | Published |