Nitrogen vacancies on 2D layered W₂N₃: a stable and efficient active site for nitrogen reduction reaction

dc.contributor.authorJin, H.
dc.contributor.authorLi, L.
dc.contributor.authorLiu, X.
dc.contributor.authorTang, C.
dc.contributor.authorXu, W.
dc.contributor.authorChen, S.
dc.contributor.authorSong, L.
dc.contributor.authorZheng, Y.
dc.contributor.authorQiao, S.Z.
dc.date.issued2019
dc.description.abstractElectrochemical nitrogen reduction reaction (NRR) under ambient conditions provides an avenue to produce carbon-free hydrogen carriers. However, the selectivity and activity of NRR are still hindered by the sluggish reaction kinetics. Nitrogen Vacancies on transition metal nitrides are considered as one of the most ideal active sites for NRR by virtue of their unique vacancy properties such as appropriate adsorption energy to dinitrogen molecule. However, their catalytic performance is usually limited by the unstable feature. Herein, a new 2D layered W2 N3 nanosheet is prepared and the nitrogen vacancies are demonstrated to be active for electrochemical NRR with a steady ammonia production rate of 11.66 ± 0.98 µg h-1 mgcata -1 (3.80 ± 0.32 × 10-11 mol cm-2 s-1 ) and Faradaic efficiency of 11.67 ± 0.93% at -0.2 V versus reversible hydrogen electrode for 12 cycles (24 h). A series of ex situ synchrotron-based characterizations prove that the nitrogen vacancies on 2D W2 N3 are stable by virtue of the high valence state of tungsten atoms and 2D confinement effect. Density function theory calculations suggest that nitrogen vacancies on W2 N3 can provide an electron-deficient environment which not only facilitates nitrogen adsorption, but also lowers the thermodynamic limiting potential of NRR.
dc.description.statementofresponsibilityHuanyu Jin, Laiquan Li, Xin Liu, Cheng Tang, Wenjie Xu, Shuangming Chen, Li Song, Yao Zheng and Shi-Zhang Qiao
dc.identifier.citationAdvanced Materials, 2019; 31(32):1-8
dc.identifier.doi10.1002/adma.201902709
dc.identifier.issn0935-9648
dc.identifier.issn1521-4095
dc.identifier.orcidJin, H. [0000-0002-1950-2364]
dc.identifier.orcidLi, L. [0000-0002-3301-9029]
dc.identifier.orcidLiu, X. [0000-0003-1871-9323]
dc.identifier.orcidTang, C. [0000-0002-5167-1192]
dc.identifier.orcidZheng, Y. [0000-0002-2411-8041]
dc.identifier.orcidQiao, S.Z. [0000-0002-1220-1761] [0000-0002-4568-8422]
dc.identifier.urihttp://hdl.handle.net/2440/120059
dc.language.isoen
dc.publisherWiley
dc.relation.granthttp://purl.org/au-research/grants/arc/DE160101163
dc.relation.granthttp://purl.org/au-research/grants/arc/DP160104866
dc.relation.granthttp://purl.org/au-research/grants/arc/LP160100927
dc.relation.granthttp://purl.org/au-research/grants/arc/FL170100154
dc.relation.granthttp://purl.org/au-research/grants/arc/DP170104464
dc.rights© 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
dc.source.urihttps://doi.org/10.1002/adma.201902709
dc.subject2D materials
dc.subjectammonia
dc.subjectelectrocatalysis
dc.subjectnitrogen reduction
dc.subjectnitrogen vacancy
dc.titleNitrogen vacancies on 2D layered W₂N₃: a stable and efficient active site for nitrogen reduction reaction
dc.title.alternativeNitrogen vacancies on 2D layered W(2)N(3): a stable and efficient active site for nitrogen reduction reaction
dc.typeJournal article
pubs.publication-statusPublished

Files