Differential topology of semimetals

dc.contributor.authorVarghese, M.
dc.contributor.authorThiang, G.
dc.date.issued2017
dc.description.abstractThe subtle interplay between local and global charges for topological semimetals exactly parallels that for singular vector fields. Part of this story is the relationship between cohomological semimetal invariants, Euler structures, and ambiguities in the connections between Weyl points. Dually, a topological semimetal can be represented by Euler chains from which its surface Fermi arc connectivity can be deduced. These dual pictures, and the link to topological invariants of insulators, are organised using geometric exact sequences. We go beyond Dirac-type Hamiltonians and introduce new classes of semimetals whose local charges are subtle Atiyah–Dupont–Thomas invariants globally constrained by the Kervaire semicharacteristic, leading to the prediction of torsion Fermi arcs.
dc.description.statementofresponsibilityVarghese Mathai, Guo Chuan Thiang
dc.identifier.citationCommunications in Mathematical Physics, 2017; 355(2):561-602
dc.identifier.doi10.1007/s00220-017-2965-z
dc.identifier.issn0010-3616
dc.identifier.issn1432-0916
dc.identifier.orcidVarghese, M. [0000-0002-1100-3595]
dc.identifier.orcidThiang, G. [0000-0003-0268-0065]
dc.identifier.urihttp://hdl.handle.net/2440/109219
dc.language.isoen
dc.publisherSpringer
dc.relation.granthttp://purl.org/au-research/grants/arc/DP150100008
dc.relation.granthttp://purl.org/au-research/grants/arc/DE170100149
dc.rights© Springer-Verlag GmbH Germany 2017
dc.source.urihttps://link.springer.com/journal/220
dc.titleDifferential topology of semimetals
dc.typeJournal article
pubs.publication-statusPublished

Files