A characterisation of tangent subplanes of PG(2, q³)
dc.contributor.author | Barwick, S. | |
dc.contributor.author | Jackson, W. | |
dc.date.issued | 2014 | |
dc.description.abstract | In “Barwick and Jackson (Finite Fields Appl. 18:93–107 2012)”, the authors determine the representation of Order-q-subplanes s and order-q-sublines of PG(2, q³) in the Bruck–Bose representation in PG(6, q). In particular, they showed that an Order-q-subplanes of PG(2, q³) corresponds to a certain ruled surface in PG(6, q). In this article we show that the converse holds, namely that any ruled surface satisfying the required properties corresponds to a tangent Order-q-subplanes of PG(2, q³). | |
dc.description.statementofresponsibility | S. G. Barwick, Wen-Ai Jackson | |
dc.identifier.citation | Designs, Codes and Cryptography, 2014; 71(3):541-545 | |
dc.identifier.doi | 10.1007/s10623-012-9754-7 | |
dc.identifier.issn | 0925-1022 | |
dc.identifier.issn | 1573-7586 | |
dc.identifier.orcid | Barwick, S. [0000-0001-9492-0323] | |
dc.identifier.orcid | Jackson, W. [0000-0002-0894-0916] | |
dc.identifier.uri | http://hdl.handle.net/2440/85545 | |
dc.language.iso | en | |
dc.publisher | Springer US | |
dc.rights | © Springer Science+Business Media New York 2012 | |
dc.source.uri | https://doi.org/10.1007/s10623-012-9754-7 | |
dc.subject | Bruck–Bose representation; PG(2, q³); Order q subplanes; 51E20 | |
dc.title | A characterisation of tangent subplanes of PG(2, q³) | |
dc.title.alternative | A characterisation of tangent subplanes of PG(2, q (3)) | |
dc.type | Journal article | |
pubs.publication-status | Published |