A characterisation of tangent subplanes of PG(2, q³)

dc.contributor.authorBarwick, S.
dc.contributor.authorJackson, W.
dc.date.issued2014
dc.description.abstractIn “Barwick and Jackson (Finite Fields Appl. 18:93–107 2012)”, the authors determine the representation of Order-q-subplanes s and order-q-sublines of PG(2, q³) in the Bruck–Bose representation in PG(6, q). In particular, they showed that an Order-q-subplanes of PG(2, q³) corresponds to a certain ruled surface in PG(6, q). In this article we show that the converse holds, namely that any ruled surface satisfying the required properties corresponds to a tangent Order-q-subplanes of PG(2, q³).
dc.description.statementofresponsibilityS. G. Barwick, Wen-Ai Jackson
dc.identifier.citationDesigns, Codes and Cryptography, 2014; 71(3):541-545
dc.identifier.doi10.1007/s10623-012-9754-7
dc.identifier.issn0925-1022
dc.identifier.issn1573-7586
dc.identifier.orcidBarwick, S. [0000-0001-9492-0323]
dc.identifier.orcidJackson, W. [0000-0002-0894-0916]
dc.identifier.urihttp://hdl.handle.net/2440/85545
dc.language.isoen
dc.publisherSpringer US
dc.rights© Springer Science+Business Media New York 2012
dc.source.urihttps://doi.org/10.1007/s10623-012-9754-7
dc.subjectBruck–Bose representation; PG(2, q³); Order q subplanes; 51E20
dc.titleA characterisation of tangent subplanes of PG(2, q³)
dc.title.alternativeA characterisation of tangent subplanes of PG(2, q (3))
dc.typeJournal article
pubs.publication-statusPublished

Files