Isolation and characterization of ovine IGFBP-4: protein purification and cDNA sequence

Date

1994

Authors

CARR, J.M.
GRANT, P.A.
FRANCIS, G.L.
OWENS, J.A.
WALLACE, J.C.
WALTON, P.E.

Editors

Advisors

Journal Title

Journal ISSN

Volume Title

Type:

Journal article

Citation

Journal of Molecular Endocrinology, 1994; 13(2):219-236

Statement of Responsibility

J M Carr, P A Grant, G L Francis, J A Owens, J C Wallace and P E Walton

Conference Name

Abstract

Three different molecular mass forms of IGF-binding proteins (IGFBPs) were purified from ovine plasma by IGF-I affinity chromatography and reverse-phase HPLC: a 46 kDa doublet and 29 kDa and 24 kDa forms. Amino-terminal sequence analysis confirmed that these proteins were ovine (o)IGFBP-3 (46 kDa) and two molecular size variants of oIGFBP-4. oIGFBP-3 and the 29 kDa form of oIGFBP-4 were shown to be N-glycosylated. Isoelectric points were determined to be at approximately pH 6 for oIGFBP-3 and at pH 7 and pH 7.5 for the 29 and 24 kDa forms of oIGFBP-4 respectively. The two different molecular mass variants of oIGFBP-4 had similar IGF-binding properties. Compared with human IGFBP-3 and oIGFBP-3, the two variants of oIGFBP-4 exhibited lower relative binding to amino-terminally modified IGF-I analogues in a competitive IGF-binding assay. The full protein sequence of oIGFBP-4, as deduced from the cDNA sequence, showed a high degree of identity with rat (90%), human (96%) and bovine (98%) IGFBP-4. The cDNA sequence also showed homology over regions of the 3' non-coding sequence, particularly in comparison with bovine IGFBP-4 (96%). Northern analysis of mRNA for oIGFBP-4 indicated a 2.6 kb major transcript and two minor transcripts of approximately 2.1 and 1.8 kb. oIGFBP-4 mRNA transcripts were detected in adult ewe liver > kidney > lung >> heart and also in several fetal tissues, thus suggesting tissue-specific and developmental regulation. The availability of purified oIGFBP-4 and oIGFBP-3 as well as DNA probes for oIGFBP-4 will enable further study of the properties and functions of these proteins, as well as the establishment of specific assays for these IGFBPs.

School/Discipline

Dissertation Note

Provenance

Description

Access Status

Rights

©1994 Journal of Endocrinology

License

Grant ID

Call number

Persistent link to this record