Monogenic functions in conformal geometry

dc.contributor.authorEastwood, Michael Georgeen
dc.contributor.authorRyan, J. A.en
dc.contributor.schoolSchool of Mathematical Sciencesen
dc.date.issued2007en
dc.description.abstractMonogenic functions are basic to Clifford analysis. On Euclidean space they are defined as smooth functions with values in the corresponding Clifford algebra satisfying a certain system of first order differential equations, usually referred to as the Dirac equation. There are two equally natural extensions of these equations to a Riemannian spin manifold only one of which is conformally invariant. We present a straightforward exposition.en
dc.description.statementofresponsibilityMichael Eastwood and John Ryanen
dc.identifier.citationSymmetry Integrability and Geometry: Methods and Applications, 2007; 3 (84):1-14en
dc.identifier.doi10.3842/SIGMA.2007.084en
dc.identifier.issn1815-0659en
dc.identifier.urihttp://hdl.handle.net/2440/43257
dc.language.isoenen
dc.publisherNatsional'na Akademiya Nauk Ukrainy Instytut Matematykyen
dc.source.urihttp://www.emis.de/journals/SIGMA/2007/084/en
dc.titleMonogenic functions in conformal geometryen
dc.typeJournal articleen

Files