Monogenic functions in conformal geometry
dc.contributor.author | Eastwood, Michael George | en |
dc.contributor.author | Ryan, J. A. | en |
dc.contributor.school | School of Mathematical Sciences | en |
dc.date.issued | 2007 | en |
dc.description.abstract | Monogenic functions are basic to Clifford analysis. On Euclidean space they are defined as smooth functions with values in the corresponding Clifford algebra satisfying a certain system of first order differential equations, usually referred to as the Dirac equation. There are two equally natural extensions of these equations to a Riemannian spin manifold only one of which is conformally invariant. We present a straightforward exposition. | en |
dc.description.statementofresponsibility | Michael Eastwood and John Ryan | en |
dc.identifier.citation | Symmetry Integrability and Geometry: Methods and Applications, 2007; 3 (84):1-14 | en |
dc.identifier.doi | 10.3842/SIGMA.2007.084 | en |
dc.identifier.issn | 1815-0659 | en |
dc.identifier.uri | http://hdl.handle.net/2440/43257 | |
dc.language.iso | en | en |
dc.publisher | Natsional'na Akademiya Nauk Ukrainy Instytut Matematyky | en |
dc.source.uri | http://www.emis.de/journals/SIGMA/2007/084/ | en |
dc.title | Monogenic functions in conformal geometry | en |
dc.type | Journal article | en |