Approximating Spectral invariants of Harper operators on graphs II

dc.contributor.authorVarghese, M.
dc.contributor.authorSchick, T.
dc.contributor.authorYates, S.
dc.date.issued2003
dc.description.abstractWe study Harper operators and the closely related discrete magnetic Laplacians (DML) on a graph with a free action of a discrete group, as defined by Sunada. The spectral density function of the DML is defined using the von Neumann trace associated with the free action of a discrete group on a graph. The main result in this paper states that when the group is amenable, the spectral density function is equal to the integrated density of states of the DML that is defined using either Dirichlet or Neumann boundary conditions. This establishes the main conjecture in a paper by Mathai and Yates. The result is generalized to other self adjoint operators with finite propagation speed.
dc.description.statementofresponsibilityVarghese Mathai; Thomas Schick; Stuart Yates
dc.identifier.citationProceedings of the American Mathematical Society, 2003; 131(6):1917-1923
dc.identifier.doi10.1090/S0002-9939-02-06739-4
dc.identifier.issn0002-9939
dc.identifier.issn1088-6826
dc.identifier.orcidVarghese, M. [0000-0002-1100-3595]
dc.identifier.urihttp://hdl.handle.net/2440/39441
dc.language.isoen
dc.publisherAmer Mathematical Soc
dc.rights© 2002 American Mathematical Society
dc.source.urihttps://doi.org/10.1090/s0002-9939-02-06739-4
dc.titleApproximating Spectral invariants of Harper operators on graphs II
dc.typeJournal article
pubs.publication-statusPublished

Files