A hybrid approach to monthly streamflow forecasting: integrating hydrological model outputs into a Bayesian artificial neural network

dc.contributor.authorHumphrey, G.
dc.contributor.authorGibbs, M.
dc.contributor.authorDandy, G.
dc.contributor.authorMaier, H.
dc.date.issued2016
dc.description.abstractAbstract not available
dc.description.statementofresponsibilityGreer B. Humphrey, Matthew S. Gibbs, Graeme C. Dandy, Holger R. Maier
dc.identifier.citationJournal of Hydrology, 2016; 540:623-640
dc.identifier.doi10.1016/j.jhydrol.2016.06.026
dc.identifier.issn0022-1694
dc.identifier.issn1879-2707
dc.identifier.orcidHumphrey, G. [0000-0001-7782-5463]
dc.identifier.orcidGibbs, M. [0000-0001-6653-8688]
dc.identifier.orcidDandy, G. [0000-0001-5846-7365]
dc.identifier.orcidMaier, H. [0000-0002-0277-6887]
dc.identifier.urihttp://hdl.handle.net/2440/105969
dc.language.isoen
dc.publisherElsevier
dc.rights© 2016 Elsevier B.V. All rights reserved.
dc.source.urihttps://doi.org/10.1016/j.jhydrol.2016.06.026
dc.subjectMonthly streamflow forecasting; Bayesian artificial neural networks; Conceptual hydrological models; uncertainty; hybrid modelling; South Australia
dc.titleA hybrid approach to monthly streamflow forecasting: integrating hydrological model outputs into a Bayesian artificial neural network
dc.typeJournal article
pubs.publication-statusPublished

Files