General relation for stationary probability density functions
dc.contributor.author | Mi, Jianchun | en |
dc.contributor.author | Antonia, R. A. | en |
dc.contributor.school | School of Mechanical Engineering | en |
dc.date.issued | 1995 | en |
dc.description.abstract | A linear relation between a normalized, time (t) dependent, statistically stationary quantity (z) and the normalized conditional expectation (r) of ∂2z/∂t2 allows r to generally satisfy two conditions subject to the stationarity requirement. Experimental data for both temperature and vorticity in several turbulent flows indicate that this relation appears universal. As a result, the exact expression derived by Pope and Ching [Phys. Fluids A 5, 1529 (1993)] for the probability density function (PDF) of any stationary quantity should generally reduce to the simpler form obtained by Ching [Phys. Rev. Lett. 70, 283 (1993)]. | en |
dc.description.statementofresponsibility | J. Mi and R. A. Antonia | en |
dc.identifier.citation | Physical Review E, 1995; 51(5):4466-4468 | en |
dc.identifier.doi | 10.1103/PhysRevE.51.4466 | en |
dc.identifier.issn | 1063-651X | en |
dc.identifier.uri | http://hdl.handle.net/2440/2884 | |
dc.language.iso | en | en |
dc.publisher | American Physical Society | en |
dc.rights | ©1995 American Physical Society | en |
dc.title | General relation for stationary probability density functions | en |
dc.type | Journal article | en |
Files
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- hdl_2884.pdf
- Size:
- 128.62 KB
- Format:
- Adobe Portable Document Format
- Description:
- Published version