Realisations of elliptic operators on compact manifolds with boundary

Date

2023

Authors

Bandara, L.
Goffeng, M.
Saratchandran, H.

Editors

Advisors

Journal Title

Journal ISSN

Volume Title

Type:

Journal article

Citation

Advances in Mathematics, 2023; 420:108968-108968

Statement of Responsibility

Lashi Bandara, Magnus Goffeng, Hemanth Saratchandran

Conference Name

Abstract

This paper investigates realisations of elliptic differential operators of general order on manifolds with boundary following the approach of Bär-Ballmann to first order elliptic operators. The space of possible boundary values of elements in the maximal domain is described as a Hilbert space densely sandwiched between two mixed order Sobolev spaces. The description uses Calderón projectors which, in the first order case, is equivalent to results of Bär-Bandara using spectral projectors of an adapted boundary operator. Boundary conditions that induce Fredholm as well as regular realisations, and those that admit higher order regularity, are characterised. In addition, results concerning spectral theory, homotopy invariance of the Fredholm index, and well-posedness for higher order elliptic boundary value problems are proven.

School/Discipline

Dissertation Note

Provenance

Description

Access Status

Rights

© 2023 Published by Elsevier Inc.

License

Call number

Persistent link to this record