The Structural Response of the Human Head to a Vertex Impact

Files

hdl_139622.pdf (1.19 MB)
  (Published version)

Date

2023

Authors

Thompson-Bagshaw, D.W.
Quarrington, R.D.
Dwyer, A.M.
Jones, N.R.
Jones, C.F.

Editors

Advisors

Journal Title

Journal ISSN

Volume Title

Type:

Journal article

Citation

Annals of Biomedical Engineering, 2023; 51(12):2897-2907

Statement of Responsibility

Darcy W. Thompson, Bagshaw, Ryan D. Quarrington, Andrew M. Dwyer, Nigel R. Jones, Claire F. Jones

Conference Name

Abstract

In experimental models of cervical spine trauma caused by near-vertex head-first impact, a surrogate headform may be substituted for the cadaveric head. To inform headform design and to verify that such substitution is valid, the force-deformation response of the human head with boundary conditions relevant to cervical spine head-first impact models is required. There are currently no biomechanics data that characterize the force-deformation response of the isolated head supported at the occiput and compressed at the vertex by a flat impactor. The effect of impact velocity (1, 2 or 3 m/s) on the response of human heads (N = 22) subjected to vertex impacts, while supported by a rigid occipital mount, was investigated. 1 and 2 m/s impacts elicited force-deformation responses with two linear regions, while 3 m/s impacts resulted in a single linear region and skull base ring fractures. Peak force and stiffness increased from 1 to 2 and 3 m/s. Deformation at peak force and absorbed energy increased from 1 to 2 m/s, but decreased from 2 to 3 m/s. The data reported herein enhances the limited knowledge on the human head's response to a vertex impact, which may allow for validation of surrogate head models in this loading scenario.

School/Discipline

Dissertation Note

Provenance

Description

Published online: 21 September 2023

Access Status

Rights

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

License

Call number

Persistent link to this record