Averaging approximation to singularly perturbed nonlinear stochastic wave equations

dc.contributor.authorLv, Y.
dc.contributor.authorRoberts, A.
dc.contributor.departmentFaculty of Engineering, Computer & Mathematical Sciences
dc.date.issued2012
dc.description.abstractAn averaging method is applied to derive effective approximation to a singularly perturbed nonlinear stochastic damped wave equation. Small parameter ν > 0 characterizes the singular perturbation, and νᵅ, 0 ≤ α ≤ 1/2, parametrizes the strength of the noise. Some scaling transformations and the martingale representation theorem yield the effective approximation, a stochastic nonlinear heat equation, for small ν in the sense of distribution.
dc.description.statementofresponsibilityYan Lv and A. J. Roberts
dc.identifier.citationJournal of Mathematical Physics, 2012; 53(6):1-12
dc.identifier.doi10.1063/1.4726175
dc.identifier.issn0022-2488
dc.identifier.issn1089-7658
dc.identifier.orcidRoberts, A. [0000-0001-8930-1552]
dc.identifier.urihttp://hdl.handle.net/2440/71466
dc.language.isoen
dc.publisherAmer Inst Physics
dc.rights© 2012 American Institute of Physics
dc.source.urihttps://doi.org/10.1063/1.4726175
dc.subjectnonlinear equations
dc.subjectstochastic processes
dc.subjectwave equations
dc.titleAveraging approximation to singularly perturbed nonlinear stochastic wave equations
dc.typeJournal article
pubs.publication-statusPublished

Files