Averaging approximation to singularly perturbed nonlinear stochastic wave equations
dc.contributor.author | Lv, Y. | |
dc.contributor.author | Roberts, A. | |
dc.contributor.department | Faculty of Engineering, Computer & Mathematical Sciences | |
dc.date.issued | 2012 | |
dc.description.abstract | An averaging method is applied to derive effective approximation to a singularly perturbed nonlinear stochastic damped wave equation. Small parameter ν > 0 characterizes the singular perturbation, and νᵅ, 0 ≤ α ≤ 1/2, parametrizes the strength of the noise. Some scaling transformations and the martingale representation theorem yield the effective approximation, a stochastic nonlinear heat equation, for small ν in the sense of distribution. | |
dc.description.statementofresponsibility | Yan Lv and A. J. Roberts | |
dc.identifier.citation | Journal of Mathematical Physics, 2012; 53(6):1-12 | |
dc.identifier.doi | 10.1063/1.4726175 | |
dc.identifier.issn | 0022-2488 | |
dc.identifier.issn | 1089-7658 | |
dc.identifier.orcid | Roberts, A. [0000-0001-8930-1552] | |
dc.identifier.uri | http://hdl.handle.net/2440/71466 | |
dc.language.iso | en | |
dc.publisher | Amer Inst Physics | |
dc.rights | © 2012 American Institute of Physics | |
dc.source.uri | https://doi.org/10.1063/1.4726175 | |
dc.subject | nonlinear equations | |
dc.subject | stochastic processes | |
dc.subject | wave equations | |
dc.title | Averaging approximation to singularly perturbed nonlinear stochastic wave equations | |
dc.type | Journal article | |
pubs.publication-status | Published |