Metric connections in projective differential geometry
dc.contributor.author | Eastwood, Michael George | en |
dc.contributor.author | Matveev, Vladimir | en |
dc.contributor.school | School of Mathematical Sciences | en |
dc.date.issued | 2008 | en |
dc.description.abstract | We search for Riemannian metrics whose Levi-Civita connection belongs to a given projective class. Following Sinjukov and Mikeš, we show that such metrics correspond precisely to suitably positive solutions of a certain projectively invariant finite-type linear system of partial differential equations. Prolonging this system, we may reformulate these equations as defining covariant constant sections of a certain vector bundle with connection. This vector bundle and its connection are derived from the Cartan connection of the underlying projective structure. | en |
dc.description.statementofresponsibility | Michael Eastwood and Vladimir Matveev | en |
dc.description.uri | http://www.springer.com/math/dyn.+systems/book/978-0-387-73830-7 | en |
dc.identifier.citation | Sysmmetries and Overdetermined Systems of Partial Differential Equations / Michael Eastwood and Willard Miller (eds.):pp.339-350 | en |
dc.identifier.doi | 10.1007/978-0-387-73831-4_16 | en |
dc.identifier.isbn | 9780387738314 | en |
dc.identifier.uri | http://hdl.handle.net/2440/54409 | |
dc.language.iso | en | en |
dc.publisher | Springer | en |
dc.relation.ispartofseries | The IMA Volumes in Mathematics and its Applications ; 144 | en |
dc.subject | projective differential geometry; metric connection; tractor | en |
dc.title | Metric connections in projective differential geometry | en |
dc.type | Book chapter | en |