Metric connections in projective differential geometry

dc.contributor.authorEastwood, Michael Georgeen
dc.contributor.authorMatveev, Vladimiren
dc.contributor.schoolSchool of Mathematical Sciencesen
dc.date.issued2008en
dc.description.abstractWe search for Riemannian metrics whose Levi-Civita connection belongs to a given projective class. Following Sinjukov and Mikeš, we show that such metrics correspond precisely to suitably positive solutions of a certain projectively invariant finite-type linear system of partial differential equations. Prolonging this system, we may reformulate these equations as defining covariant constant sections of a certain vector bundle with connection. This vector bundle and its connection are derived from the Cartan connection of the underlying projective structure.en
dc.description.statementofresponsibilityMichael Eastwood and Vladimir Matveeven
dc.description.urihttp://www.springer.com/math/dyn.+systems/book/978-0-387-73830-7en
dc.identifier.citationSysmmetries and Overdetermined Systems of Partial Differential Equations / Michael Eastwood and Willard Miller (eds.):pp.339-350en
dc.identifier.doi10.1007/978-0-387-73831-4_16en
dc.identifier.isbn9780387738314en
dc.identifier.urihttp://hdl.handle.net/2440/54409
dc.language.isoenen
dc.publisherSpringeren
dc.relation.ispartofseriesThe IMA Volumes in Mathematics and its Applications ; 144en
dc.subjectprojective differential geometry; metric connection; tractoren
dc.titleMetric connections in projective differential geometryen
dc.typeBook chapteren

Files