Optimal stimulus and noise distributions for information transmission via suprathreshold stochastic resonance

Files

hdl_43732.pdf (356.68 KB)
  (Published version)

Date

2007

Authors

McDonnell, M.
Stocks, N.
Abbott, D.

Editors

Advisors

Journal Title

Journal ISSN

Volume Title

Type:

Journal article

Citation

Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 2007; 75(6):061105-01-061105-13

Statement of Responsibility

Mark D. McDonnell, Nigel G. Stocks, and Derek Abbott

Conference Name

Abstract

Suprathreshold stochastic resonance (SSR) is a form of noise-enhanced signal transmission that occurs in a parallel array of independently noisy identical threshold nonlinearities, including model neurons. Unlike most forms of stochastic resonance, the output response to suprathreshold random input signals of arbitrary magnitude is improved by the presence of even small amounts of noise. In this paper, the information transmission performance of SSR in the limit of a large array size is considered. Using a relationship between Shannon's mutual information and Fisher information, a sufficient condition for optimality, i.e., channel capacity, is derived. It is shown that capacity is achieved when the signal distribution is Jeffrey's prior, as formed from the noise distribution, or when the noise distribution depends on the signal distribution via a cosine relationship. These results provide theoretical verification and justification for previous work in both computational neuroscience and electronics.

School/Discipline

Dissertation Note

Provenance

Description

Access Status

Rights

©2007 American Physical Society

License

Grant ID

Call number

Persistent link to this record