The Riemann-Roch theorem on higher dimensional complex noncommutative tori
dc.contributor.author | Varghese, M. | |
dc.contributor.author | Rosenberg, J. | |
dc.date.issued | 2020 | |
dc.description.abstract | We prove analogues of the Riemann–Roch Theorem and the Hodge Theorem for noncommutative tori (of any dimension) equipped with complex structures, and discuss implications for the question of how to distinguish “noncommutative abelian varieties” from “non-algebraic” noncommutative complex tori. | |
dc.description.statementofresponsibility | Varghese Mathai, Jonathan Rosenberg | |
dc.identifier.citation | Journal of Geometry and Physics, 2020; 147:103534-1-103534-9 | |
dc.identifier.doi | 10.1016/j.geomphys.2019.103534 | |
dc.identifier.issn | 0393-0440 | |
dc.identifier.issn | 1879-1662 | |
dc.identifier.orcid | Varghese, M. [0000-0002-1100-3595] | |
dc.identifier.uri | http://hdl.handle.net/2440/122600 | |
dc.language.iso | en | |
dc.publisher | Elsevier | |
dc.relation.grant | http://purl.org/au-research/grants/arc/FL170100020 | |
dc.rights | © 2019 Elsevier B.V. All rights reserved. | |
dc.source.uri | https://doi.org/10.1016/j.geomphys.2019.103534 | |
dc.subject | Noncommutative torus; Abelian variety; Index theory; Riemann–Roch Theorem; Hodge theorem | |
dc.title | The Riemann-Roch theorem on higher dimensional complex noncommutative tori | |
dc.type | Journal article | |
pubs.publication-status | Published |