The Riemann-Roch theorem on higher dimensional complex noncommutative tori

dc.contributor.authorVarghese, M.
dc.contributor.authorRosenberg, J.
dc.date.issued2020
dc.description.abstractWe prove analogues of the Riemann–Roch Theorem and the Hodge Theorem for noncommutative tori (of any dimension) equipped with complex structures, and discuss implications for the question of how to distinguish “noncommutative abelian varieties” from “non-algebraic” noncommutative complex tori.
dc.description.statementofresponsibilityVarghese Mathai, Jonathan Rosenberg
dc.identifier.citationJournal of Geometry and Physics, 2020; 147:103534-1-103534-9
dc.identifier.doi10.1016/j.geomphys.2019.103534
dc.identifier.issn0393-0440
dc.identifier.issn1879-1662
dc.identifier.orcidVarghese, M. [0000-0002-1100-3595]
dc.identifier.urihttp://hdl.handle.net/2440/122600
dc.language.isoen
dc.publisherElsevier
dc.relation.granthttp://purl.org/au-research/grants/arc/FL170100020
dc.rights© 2019 Elsevier B.V. All rights reserved.
dc.source.urihttps://doi.org/10.1016/j.geomphys.2019.103534
dc.subjectNoncommutative torus; Abelian variety; Index theory; Riemann–Roch Theorem; Hodge theorem
dc.titleThe Riemann-Roch theorem on higher dimensional complex noncommutative tori
dc.typeJournal article
pubs.publication-statusPublished

Files