Efficient reverse converter designs for the new 4-moduli sets {2(n)-1, 2(n), 2(n)+1, 2(2n+1)-1} and {2(n)-1, 2(n)+1, 2(2n), 2(2n)+1} based on new CRTs

dc.contributor.authorMolahosseini, A.
dc.contributor.authorNavi, K.
dc.contributor.authorDadkhah, C.
dc.contributor.authorKavehei, O.
dc.contributor.authorTimarchi, S.
dc.date.issued2010
dc.description.abstractIn this paper, we introduce two new 4-moduli sets {2<sup>n</sup>-1, 2 <sup>n</sup>, 2<sup>n</sup> +1, 2<sup>2n + 1</sup>-1} and {2<sup>n</sup>-1, 2<sup>n</sup> +1, 2<sup>2n</sup>, 2<sup>2n</sup> +1} for developing efficient large dynamic range (DR) residue number systems (RNS). These moduli sets consist of simple and well-formed moduli which can result in efficient implementation of the reverse converter as well as internal RNS arithmetic circuits. The moduli set {2<sup>n</sup>-1, 2<sup>n</sup>, 2<sup>n</sup> +1, 2<sup>2n + 1</sup>-1} has 5n-bit DR and it can result in a fast RNS arithmetic unit, while the 6n-bit DR moduli set {2<sup>n</sup>-1, 2<sup>n</sup> +1, 2<sup>2n</sup>, 2<sup>2n</sup> +1} is a conversion friendly moduli set which can lead to a high-speed and low-cost reverse converter design. Next, efficient reverse converters for the proposed moduli sets based on new Chinese remainder theorems (New CRTs) are presented. The converter for the moduli set {2<sup>n</sup>-1, 2<sup>n</sup>, 2<sup>n</sup> +1, 2<sup>2n + 1</sup>-1} is derived by New CRT-II with better performance compared to the reverse converter for the latest introduced 5n-bit DR moduli set {2<sup>n</sup>-1, 2<sup>n</sup>, 2<sup>n</sup>+1, 2 <sup>n-1</sup>}-1, 2<sup>n + 1</sup>-1}. Also, New CRT-I is used to achieve a high-performance reverse converter for the moduli set {2<sup>n</sup>-1, 2 <sup>n</sup>+1, 2<sup>2n</sup>, 2<sup>2n</sup>+1}. This converter has less conversion delay and lower hardware requirements than the reverse converter for a recently suggested 6n-bit DR moduli set {2<sup>n</sup>-1, 2<sup>n</sup> +1, 2<sup>2n</sup>-2, 2<sup>2n + 1</sup>-3}. © 2006 IEEE.
dc.description.statementofresponsibilityAmir Sabbagh Molahosseini, Keivan Navi, Chitra Dadkhah, Omid Kavehei, and Somayeh Timarchi
dc.identifier.citationIEEE Transactions on Circuits and Systems Part 1: Regular Papers, 2010; 57(4):823-835
dc.identifier.doi10.1109/TCSI.2009.2026681
dc.identifier.issn1549-8328
dc.identifier.issn1558-0806
dc.identifier.urihttp://hdl.handle.net/2440/60041
dc.language.isoen
dc.publisherIEEE
dc.rights© 2010 IEEE
dc.source.urihttps://doi.org/10.1109/tcsi.2009.2026681
dc.subjectComputer arithmetic
dc.subjectnew Chinese remainder theorems (New CRTs)
dc.subjectresidue arithmetic
dc.subjectreverse converter
dc.subjectresidue number system (RNS)
dc.titleEfficient reverse converter designs for the new 4-moduli sets {2(n)-1, 2(n), 2(n)+1, 2(2n+1)-1} and {2(n)-1, 2(n)+1, 2(2n), 2(2n)+1} based on new CRTs
dc.typeJournal article
pubs.publication-statusPublished

Files