A coboundary morphism for the grothendieck spectral sequence

dc.contributor.authorBaraglia, D.
dc.date.issued2014
dc.description.abstractGiven an abelian category A with enough injectives we show that a short exact sequence of chain complexes of objects in A gives rise to a short exact sequence of Cartan-Eilenberg resolutions. Using this we construct coboundary morphisms between Grothendieck spectral sequences associated to objects in a short exact sequence. We show that the coboundary preserves the filtrations associated with the spectral sequences and give an application of these result to filtrations in sheaf cohomology.
dc.description.statementofresponsibilityDavid Baraglia
dc.identifier.citationApplied Categorical Structures, 2014; 22(1):269-288
dc.identifier.doi10.1007/s10485-013-9306-y
dc.identifier.issn0927-2852
dc.identifier.issn1572-9095
dc.identifier.orcidBaraglia, D. [0000-0002-8450-1165]
dc.identifier.urihttp://hdl.handle.net/2440/98920
dc.language.isoen
dc.publisherSpringer
dc.relation.granthttp://purl.org/au-research/grants/arc/DP110103745
dc.rights© Springer Science+Business Media Dordrecht 2013
dc.source.urihttps://doi.org/10.1007/s10485-013-9306-y
dc.subjectSpectral sequence; Grothendieck; Leray; coboundary; filtration
dc.titleA coboundary morphism for the grothendieck spectral sequence
dc.typeJournal article
pubs.publication-statusPublished

Files