Simpler foundations for the hyperbolic plane

dc.contributor.authorBamberg, J.
dc.contributor.authorPenttila, T.
dc.date.issued2023
dc.descriptionPublished Online: 2023-03-03
dc.description.abstractH. L. Skala (1992) gave the first elegant first-order axiom system for hyperbolic geometry by replacing Menger’s axiom involving projectivities with the theorems of Pappus and Desargues for the hyperbolic plane. In so doing, Skala showed that hyperbolic geometry is incidence geometry. We improve upon Skala’s formulation by doing away with Pappus and Desargues altogether, by substituting for them two simpler axioms.
dc.description.statementofresponsibilityJohn Bamberg, Tim Penttila
dc.identifier.citationForum Mathematicum, 2023; 35(5):1301-1325
dc.identifier.doi10.1515/forum-2022-0268
dc.identifier.issn0933-7741
dc.identifier.issn1435-5337
dc.identifier.urihttps://hdl.handle.net/2440/137875
dc.language.isoen
dc.publisherDe Gruyter
dc.relation.granthttp://purl.org/au-research/grants/arc/FT120100036
dc.rights© 2023 Walter de Gruyter GmbH, Berlin/Boston
dc.source.urihttps://doi.org/10.1515/forum-2022-0268
dc.subjectHyperbolic plane; metric plane; first-order axiomatisation; abstract oval
dc.titleSimpler foundations for the hyperbolic plane
dc.typeJournal article
pubs.publication-statusPublished

Files