Optimising monotone chance-constrained submodular functions using evolutionary multi-objective algorithms
dc.contributor.author | Neumann, A. | |
dc.contributor.author | Neumann, F. | |
dc.contributor.conference | International Conference on Parallel Problem Solving from Nature (PPSN) (5 Sep 2020 - 9 Sep 2020 : Leiden, The Netherlands) | |
dc.contributor.editor | Bäck, T. | |
dc.contributor.editor | Preuss, M. | |
dc.contributor.editor | Deutz, A.H. | |
dc.contributor.editor | Wang, H. | |
dc.contributor.editor | Doerr, C. | |
dc.contributor.editor | Emmerich, M.T.M. | |
dc.contributor.editor | Trautmann, H. | |
dc.date.issued | 2020 | |
dc.description.abstract | Many real-world optimisation problems can be stated in terms of submodular functions. A lot of evolutionary multi-objective algorithms have recently been analyzed and applied to submodular problems with different types of constraints. We present a first runtime analysis of evolutionary multi-objective algorithms for chance-constrained submodular functions. Here, the constraint involves stochastic components and the constraint can only be violated with a small probability of α. We show that the GSEMO algorithm obtains the same worst case performance guarantees as recently analyzed greedy algorithms. Furthermore, we investigate the behavior of evolutionary multi-objective algorithms such as GSEMO and NSGA-II on different submodular chance constrained network problems. Our experimental results show that this leads to significant performance improvements compared to the greedy algorithm. | |
dc.description.statementofresponsibility | Aneta Neumann and Frank Neumann | |
dc.identifier.citation | Lecture Notes in Artificial Intelligence, 2020 / Bäck, T., Preuss, M., Deutz, A.H., Wang, H., Doerr, C., Emmerich, M.T.M., Trautmann, H. (ed./s), vol.12269, pp.404-417 | |
dc.identifier.doi | 10.1007/978-3-030-58112-1_28 | |
dc.identifier.isbn | 9783030581114 | |
dc.identifier.issn | 0302-9743 | |
dc.identifier.issn | 1611-3349 | |
dc.identifier.orcid | Neumann, A. [0000-0002-0036-4782] | |
dc.identifier.orcid | Neumann, F. [0000-0002-2721-3618] | |
dc.identifier.uri | http://hdl.handle.net/2440/128130 | |
dc.language.iso | en | |
dc.publisher | Springer | |
dc.publisher.place | Cham, Switzerland | |
dc.relation.grant | http://purl.org/au-research/grants/arc/DP160102401 | |
dc.relation.ispartofseries | Lecture Notes in Computer Science; 12269 | |
dc.rights | © Springer Nature Switzerland AG 2020 | |
dc.source.uri | https://link.springer.com/book/10.1007/978-3-030-58112-1 | |
dc.title | Optimising monotone chance-constrained submodular functions using evolutionary multi-objective algorithms | |
dc.type | Conference paper | |
pubs.publication-status | Published |