Geometry and holonomy of indecomposable cones
dc.contributor.author | Alekseevsky, D. | |
dc.contributor.author | Cortés, V. | |
dc.contributor.author | Leistner, T. | |
dc.date.issued | 2023 | |
dc.description.abstract | We study the geometry and holonomy of semi-Riemannian, time-like metric cones that are indecomposable, i.e., which do not admit a local decomposition into a semi-Riemannian product. This includes irreducible cones, for which the holonomy can be classified, as well as non-irreducible cones. The latter admit a parallel distribution of null k-planes, and we study the cases k = 1 in detail. We give structure theorems about the base manifold and in the case when the base manifold is Lorentzian, we derive a description of the cone holonomy. This result is obtained by a computation of certain cocycles of indecomposable subalgebras in so(1,n - 1). | |
dc.description.statementofresponsibility | Dmitri Alekseevsky, Vicente Cortés and Thomas Leistner | |
dc.identifier.citation | Revista Matematica Iberoamericana, 2023; 39(3):1105-1141 | |
dc.identifier.doi | 10.4171/rmi/1330 | |
dc.identifier.issn | 0213-2230 | |
dc.identifier.issn | 2235-0616 | |
dc.identifier.orcid | Leistner, T. [0000-0002-8837-5215] | |
dc.identifier.uri | https://hdl.handle.net/2440/139844 | |
dc.language.iso | en | |
dc.publisher | EMS Press - European Mathematical Society | |
dc.relation.grant | http://purl.org/au-research/grants/arc/FT110100429 | |
dc.relation.grant | http://purl.org/au-research/grants/arc/DP190102360 | |
dc.rights | ©2022 Real Sociedad Matemática Española. Published by EMS Press and licensed under a CC BY 4.0 license | |
dc.source.uri | https://doi.org/10.4171/rmi/1330 | |
dc.title | Geometry and holonomy of indecomposable cones | |
dc.type | Journal article | |
pubs.publication-status | Published |
Files
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- hdl_139844.pdf
- Size:
- 615.95 KB
- Format:
- Adobe Portable Document Format
- Description:
- Published version