Extensive air shower asymmetry and cosmic ray mass composition with the upgraded Pierre Auger Observatory

Date

2022

Authors

Bradfield, Fraser William

Editors

Advisors

Dawson, Bruce
Bellido, Jose

Journal Title

Journal ISSN

Volume Title

Type:

Thesis

Citation

Statement of Responsibility

Conference Name

Abstract

The Pierre Auger Observatory, the largest detector in the world for observing cosmic rays, is currently undergoing a significant upgrade. The addition of scintillator detectors to the observatory's ground array aims to improve our ability to determine cosmic ray mass composition at the highest energies. One phenomenon which may provide hints to mass composition is asymmetry, the systematic difference in signal between detectors of equal perpendicular distance from the axis of an inclined extensive air shower at different azimuthal angles. In this work, the asymmetry in the water Cherenkov and surface scintillator detectors of the Pierre Auger Observatory is parameterised in simulations for proton and iron primaries. The largest difference between the two parameterisations is found to be for the scintillator detector at zenith angles > 50° and energies ~ 2x10(19)eV. The causes of asymmetry in particle density are also investigated. For the electromagnetic component of extensive air showers, atmospheric attenuation is shown to give a non-negligible contribution to the overall asymmetry. A test of the understanding of these causes is demonstrated via a basic model for the asymmetry in muon particle density. Finally, the asymmetry parameterisations are utilised to improve upon the technique of reconstructing Xmax from the slope parameters of lateral distribution functions in simulations.

School/Discipline

School of Physical Sciences

Dissertation Note

Thesis (MPhil) -- University of Adelaide, School of Physical Sciences, 2022

Provenance

This electronic version is made publicly available by the University of Adelaide in accordance with its open access policy for student theses. Copyright in this thesis remains with the author. This thesis may incorporate third party material which has been used by the author pursuant to Fair Dealing exceptions. If you are the owner of any included third party copyright material you wish to be removed from this electronic version, please complete the take down form located at: http://www.adelaide.edu.au/legals

Description

Access Status

Rights

License

Grant ID

Published Version

Call number

Persistent link to this record