Anodized 3D-printed titanium implants with dual micro- and nano-scale topography promote interaction with human osteoblasts and osteocyte-like cells

Date

2017

Authors

Gulati, K.
Prideaux, M.
Kogawa, M.
Lima-Marques, L.
Atkins, G.J.
Findlay, D.M.
Losic, D.

Editors

Advisors

Journal Title

Journal ISSN

Volume Title

Type:

Journal article

Citation

Journal of Tissue Engineering and Regenerative Medicine, 2017; 11(12):3313-3325

Statement of Responsibility

Karan Gulati, Matthew Prideaux, Masakazu Kogawa, Luis Lima-Marques, Gerald J. Atkins, David M. Findlay, Dusan Losic

Conference Name

Abstract

The success of implantation of materials into bone is governed by effective osseointegration, requiring biocompatibility of the material and the attachment and differentiation of osteoblastic cells. To enhance cellular function in response to the implant surface, micro- and nano-scale topography have been suggested as essential. In this study, we present bone implants based on 3D-printed titanium alloy (Ti6Al4V), with a unique dual topography composed of micron-sized spherical particles and vertically aligned titania nanotubes. The implants were prepared by combination of 3D-printing and anodization processes, which are scalable, simple and cost-effective. The osseointegration properties of fabricated implants, examined using human osteoblasts, showed enhanced adhesion of osteoblasts compared with titanium materials commonly used as orthopaedic implants. Gene expression studies at early (day 7) and late (day 21) stages of culture were consistent with the Ti substrates inducing an osteoblast phenotype conducive to effective osseointegration. These implants with the unique combination of micro- and nano-scale topography are proposed as the new generation of multi-functional bone implants, suitable for addressing many orthopaedic challenges, including implant rejection, poor osseointegration, inflammation, drug delivery and bone healing. Copyright © 2016 John Wiley & Sons, Ltd.

School/Discipline

Dissertation Note

Provenance

Description

First published: 07 December 2016

Access Status

Rights

© 2016 John Wiley & Sons, Ltd.

License

Call number

Persistent link to this record