Mitigating stimulated Brillouin scattering in multimode fibers with focused output via wavefront shaping

Date

2023

Authors

Chen, C.-W.
Nguyen, L.V.
Wisal, K.
Wei, S.
Warren-Smith, S.C.
Henderson-Sapir, O.
Schartner, E.P.
Ahmadi, P.
Ebendorff-Heidepriem, H.
Stone, A.D.

Editors

Advisors

Journal Title

Journal ISSN

Volume Title

Type:

Journal article

Citation

Nature Communications, 2023; 14(1):7343-1-7343-9

Statement of Responsibility

Chun-Wei Chen, Linh V. Nguyen, Kabish Wisal, Shuen Wei, Stephen C. Warren-Smith, Ori Henderson-Sapir, Erik P. Schartner, Peyman Ahmadi, Heike Ebendorff-Heidepriem, A. Douglas Stone, David J. Ottaway, Hui Cao

Conference Name

Abstract

The key challenge for high-power delivery through optical fibers is overcoming nonlinear optical effects. To keep a smooth output beam, most techniques for mitigating optical nonlinearities are restricted to single-mode fibers. Moving out of the single-mode paradigm, we show experimentally that wavefront-shaping of coherent input light to a highly multimode fiber can increase the power threshold for stimulated Brillouin scattering (SBS) by an order of magnitude, whilst simultaneously controlling the output beam profile. The SBS suppression results from an effective broadening of the Brillouin spectrum under multimode excitation, without broadening of transmitted light. Strongest suppression is achieved with selective mode excitation that gives the broadest Brillouin spectrum. Our method is efficient, robust, and applicable to continuous waves and pulses. This work points toward a promising route for mitigating detrimental nonlinear effects in optical fibers, enabling further power scaling of high-power fiber systems for applications to directed energy, remote sensing, and gravitational-wave detection.

School/Discipline

Dissertation Note

Provenance

Description

Access Status

Rights

© The Author(s) 2023. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/ licenses/by/4.0/.

License

Call number

Persistent link to this record