Substructural fixed-point theorems and the diagonal argument: theme and variations

dc.contributor.authorRoberts, D.M.
dc.date.issued2023
dc.description.abstractThis article re-examines Lawvere's abstract, category-theoretic proof of the fixed-point theorem whose contrapositive is a `universal' diagonal argument. The main result is that the necessary axioms for both the fixed-point theorem and the diagonal argument can be stripped back further, to a semantic analogue of a weak substructural logic lacking weakening or exchange.
dc.description.statementofresponsibilityDavid Michael Roberts
dc.identifier.citationCompositionality, 2023; 5(8):1-16
dc.identifier.doi10.32408/compositionality-5-8
dc.identifier.issn2631-4444
dc.identifier.orcidRoberts, D.M. [0000-0002-3478-0522]
dc.identifier.urihttps://hdl.handle.net/2440/139139
dc.language.isoen
dc.publisherCompositionality Journal
dc.relation.granthttp://purl.org/au-research/grants/arc/DP180100383
dc.rightsThis Paper is published in Compositionality under the Creative Commons Attribution 4.0 International (CC BY 4.0) license. Copyright remains with the original copyright holders such as the authors or their institutions.
dc.source.urihttps://doi.org/10.32408/compositionality-5-8
dc.subjectmath.CT
dc.subjectcs.LO
dc.subjectmath.LO
dc.subject03B47, 18A15
dc.subjectF.4.1
dc.titleSubstructural fixed-point theorems and the diagonal argument: theme and variations
dc.typeJournal article
pubs.publication-statusPublished

Files