ABCNet: Real-time scene text spotting with adaptive Bezier-curve network
Date
2020
Authors
Liu, Y.
Chen, H.
Shen, C.
He, T.
Jin, L.
Wang, L.
Editors
Advisors
Journal Title
Journal ISSN
Volume Title
Type:
Conference paper
Citation
Proceedings / CVPR, IEEE Computer Society Conference on Computer Vision and Pattern Recognition. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2020, pp.9806-9815
Statement of Responsibility
Yuliang Liu, Hao Chen, Chunhua Shen, Tong He, Lianwen Jin, Liangwei Wang
Conference Name
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (14 Jun 2020 - 19 Jun 2020 : virtual online)
Abstract
Scene text detection and recognition has received increasing research attention. Existing methods can be roughly categorized into two groups: character-based and segmentation-based. These methods either are costly for character annotation or need to maintain a complex pipeline, which is often not suitable for real-time applications. Here we address the problem by proposing the Adaptive Bezier-Curve Network (ABCNet). Our contributions are three-fold: 1) For the first time, we adaptively fit oriented or curved text by a parameterized Bezier curve. 2) We design a novel BezierAlign layer for extracting accurate convolution features of a text instance with arbitrary shapes, significantly improving the precision compared with previous methods. 3) Compared with standard bounding box detection, our Bezier curve detection introduces negligible computation overhead, resulting in superiority of our method in both efficiency and accuracy. Experiments on oriented or curved benchmark datasets, namely Total-Text and CTW1500, demonstrate that ABCNet achieves state-of-the-art accuracy, meanwhile significantly improving the speed. In particular, on Total-Text, our realtime version is over 10 times faster than recent state-of-theart methods with a competitive recognition accuracy. Code is available at https:// git.io/AdelaiDet.
School/Discipline
Dissertation Note
Provenance
Description
Access Status
Rights
©2020 IEEE