Effectiveness of decontamination protocols when analyzing ancient DNA preserved in dental calculus
Files
(Published version)
Date
2021
Authors
Farrer, A.G.
Wright, S.L.
Skelly, E.
Eisenhofer, R.
Dobney, K.
Weyrich, L.S.
Editors
Advisors
Journal Title
Journal ISSN
Volume Title
Type:
Journal article
Citation
Scientific Reports, 2021; 11(1):7456-1-7456-14
Statement of Responsibility
Andrew G. Farrer, Sterling L. Wright, Emily Skelly, Raphael Eisenhofer, Keith Dobney, Laura S. Weyrich
Conference Name
Abstract
Ancient DNA analysis of human oral microbial communities within calcified dental plaque (calculus) has revealed key insights into human health, paleodemography, and cultural behaviors. However, contamination imposes a major concern for paleomicrobiological samples due to their low endogenous DNA content and exposure to environmental sources, calling into question some published results. Decontamination protocols (e.g. an ethylenediaminetetraacetic acid (EDTA) pre-digestion or ultraviolet radiation (UV) and 5% sodium hypochlorite immersion treatments) aim to minimize the exogenous content of the outer surface of ancient calculus samples prior to DNA extraction. While these protocols are widely used, no one has systematically compared them in ancient dental calculus. Here, we compare untreated dental calculus samples to samples from the same site treated with four previously published decontamination protocols: a UV only treatment; a 5% sodium hypochlorite immersion treatment; a pre-digestion in EDTA treatment; and a combined UV irradiation and 5% sodium hypochlorite immersion treatment. We examine their efficacy in ancient oral microbiota recovery by applying 16S rRNA gene amplicon and shotgun sequencing, identifying ancient oral microbiota, as well as soil and skin contaminant species. Overall, the EDTA pre-digestion and a combined UV irradiation and 5% sodium hypochlorite immersion treatment were both effective at reducing the proportion of environmental taxa and increasing oral taxa in comparison to untreated samples. This research highlights the importance of using decontamination procedures during ancient DNA analysis of dental calculus to reduce contaminant DNA.
School/Discipline
Dissertation Note
Provenance
Description
Access Status
Rights
© The Author(s) 2021. Open Access. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.