Approximating L2 invariants of amenable covering spaces: A combinatorial approach
dc.contributor.author | Dodziuk, J. | |
dc.contributor.author | Varghese, M. | |
dc.date.issued | 1998 | |
dc.description.abstract | In this paper, we prove that theL<sup>2</sup>Betti numbers of an amenable covering space can be approximated by the average Betti numbers of a regular exhaustion, proving a conjecture in [DM]. We also prove that an arbitrary amenable covering space of a finite simplicial complex is of determinant class. © 1998 Academic Press. | |
dc.identifier.citation | Journal of Functional Analysis, 1998; 154(2):359-378 | |
dc.identifier.doi | 10.1006/jfan.1997.3205 | |
dc.identifier.issn | 0022-1236 | |
dc.identifier.orcid | Varghese, M. [0000-0002-1100-3595] | |
dc.identifier.uri | http://hdl.handle.net/2440/3598 | |
dc.language.iso | en | |
dc.publisher | ACADEMIC PRESS INC | |
dc.source.uri | https://doi.org/10.1006/jfan.1997.3205 | |
dc.title | Approximating L2 invariants of amenable covering spaces: A combinatorial approach | |
dc.type | Journal article | |
pubs.publication-status | Published |