Approximating L2 invariants of amenable covering spaces: A combinatorial approach

dc.contributor.authorDodziuk, J.
dc.contributor.authorVarghese, M.
dc.date.issued1998
dc.description.abstractIn this paper, we prove that theL<sup>2</sup>Betti numbers of an amenable covering space can be approximated by the average Betti numbers of a regular exhaustion, proving a conjecture in [DM]. We also prove that an arbitrary amenable covering space of a finite simplicial complex is of determinant class. © 1998 Academic Press.
dc.identifier.citationJournal of Functional Analysis, 1998; 154(2):359-378
dc.identifier.doi10.1006/jfan.1997.3205
dc.identifier.issn0022-1236
dc.identifier.orcidVarghese, M. [0000-0002-1100-3595]
dc.identifier.urihttp://hdl.handle.net/2440/3598
dc.language.isoen
dc.publisherACADEMIC PRESS INC
dc.source.urihttps://doi.org/10.1006/jfan.1997.3205
dc.titleApproximating L2 invariants of amenable covering spaces: A combinatorial approach
dc.typeJournal article
pubs.publication-statusPublished

Files