Low-dimensional modelling of a generalized Burgers equation

dc.contributor.authorLi, Z.
dc.contributor.authorRoberts, A.
dc.date.issued2007
dc.description.abstractBurgers equation is one of the simplest nonlinear partial differential equations—it combines the basic processes of diffusion and nonlinear steepening. In some applications it is appropriate for the diffusion coefficient to be a time-dependent function. Using a Wayne's transformation and centre manifold theory, we derive lmode and 2-mode centre manifold models of the generalised Burgers equations for bounded smooth time dependent coefficients. These modellings give some interesting extensions to existing results such as the similarity solutions using the similarity method.
dc.description.statementofresponsibilityZhenquan Li and A.J. Roberts
dc.description.urihttp://arxiv.org/abs/math-ph/0307064
dc.identifier.citationGlobal Journal of Pure and Applied Mathematics, 2007; 3(3):203-218
dc.identifier.issn0973-1768
dc.identifier.orcidRoberts, A. [0000-0001-8930-1552]
dc.identifier.urihttp://hdl.handle.net/2440/57548
dc.language.isoen
dc.publisherResearch India Publications
dc.subjectComputer algebra
dc.subjectLow-dimensional modeling
dc.subjectCenter manifold
dc.subjectBurgers equation
dc.titleLow-dimensional modelling of a generalized Burgers equation
dc.typeJournal article
pubs.publication-statusPublished

Files