Distribution patterns of postmortem damage in human mitochondrial DNA

Date

2003

Authors

Gilbert, M.
Willerslev, E.
Hansen, A.
Barnes, I.
Rudbeck, L.
Lynnerup, N.
Cooper, A.

Editors

Advisors

Journal Title

Journal ISSN

Volume Title

Type:

Journal article

Citation

American Journal of Human Genetics, 2003; 72(1):32-47

Statement of Responsibility

M. Thomas P. Gilbert, Eske Willerslev, Anders J. Hansen, Ian Barnes, Lars Rudbeck, Niels Lynnerup, and Alan Cooper

Conference Name

Abstract

The distribution of postmortem damage in mitochondrial DNA retrieved from 37 ancient human DNA samples was analyzed by cloning and was compared with a selection of published animal data. A relative rate of damage (rho(v)) was calculated for nucleotide positions within the human hypervariable region 1 (HVR1) and cytochrome oxidase subunit III genes. A comparison of damaged sites within and between the regions reveals that damage hotspots exist and that, in the HVR1, these correlate with sites known to have high in vivo mutation rates. Conversely, HVR1 subregions with known structural function, such as MT5, have lower in vivo mutation rates and lower postmortem-damage rates. The postmortem data also identify a possible functional subregion of the HVR1, termed "low-diversity 1," through the lack of sequence damage. The amount of postmortem damage observed in mitochondrial coding regions was significantly lower than in the HVR1, and, although hotspots were noted, these did not correlate with codon position. Finally, a simple method for the identification of incorrect archaeological haplogroup designations is introduced, on the basis of the observed spectrum of postmortem damage.

School/Discipline

Dissertation Note

Provenance

Description

© 2003 by The American Society of Human Genetics. All rights reserved.

Access Status

Rights

License

Grant ID

Call number

Persistent link to this record