Multilevel analysis of integration and disparity in the mammalian skull

Files

hdl_137845.pdf (8.65 MB)
  (Published version)

Date

2023

Authors

Sherratt, E.
Kraatz, B.

Editors

Advisors

Journal Title

Journal ISSN

Volume Title

Type:

Journal article

Citation

Evolution, 2023; 77(4):1006-1018

Statement of Responsibility

Emma Sherratt and Brian Kraatz

Conference Name

Abstract

Biological variation is often considered in a scalable hierarchy, e.g., within the individual, within the populations, above the species level. Morphological integration, the concept of covariation among constituent parts of an organism, is also hierarchical; the degree to which these ‘modules’ covary is a matter of the scale of the study as well as underlying processes driving the covariation. Multilevel analyses of trait covariation are a valuable tool to infer the origins and historical persistence of morphological diversity. Here we investigate concordance in patterns of integration and modularity across three biological levels of variation: within a species, within two genera-level radiations, and among species at the family level. We demonstrate this approach using the skull of mammalian family Leporidae (rabbits and hares), which is morphologically diverse and has a rare-among-mammals functional signal of locomotion adaptation. We tested three alternative hypotheses of modularity; from the most supported we investigated disparity and integration of each module to infer which is most responsible for patterns of cranial variation across these levels, and whether variation is partitioned consistently across levels. We found a common pattern of modularity underlies leporid cranial diversity, though there is inconsistency across levels in each module’s disparity and integration. The face module contributes the most to disparity at all levels, which we propose is facilitating evolutionary diversity in this clade. Therefore, the distinctive facial tilt of leporids is an adaptation to locomotory behavior facilitated by a modular system that allows lineages to respond differently to selection pressures.

School/Discipline

Dissertation Note

Provenance

Description

Advance access publication 13 February 2023

Access Status

Rights

© The Author(s) 2023. Published by Oxford University Press on behalf of The Society for the Study of Evolution (SSE). This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (https://creativecommons.org/ licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com

License

Call number

Persistent link to this record