Cu₇S₄/MxSy (M=Cd, Ni, and Mn) Janus Atomic Junctions for Plasmonic Energy Upconversion Boosted Multi-Functional Photocatalysis

dc.contributor.authorGuo, M.
dc.contributor.authorTalebian-Kiakalaieh, A.
dc.contributor.authorXia, B.
dc.contributor.authorHu, Y.
dc.contributor.authorChen, H.
dc.contributor.authorRan, J.
dc.contributor.authorQiao, S.Z.
dc.date.issued2023
dc.description.abstractRational design/synthesis of atomic-level-engineered Janus junctions for sunlight-impelled high-performance photocatalytic generation of clean fuels (e.g., H2O2 and H2) and valuable chemicals are of great significance. Especially, it is appealing but challenging to acquire accurately-engineered Janus atomic junctions (JAJs) for simultaneously realizing the plasmonic energy upconversion with near-infrared (NIR) light and direct Z-scheme charge transfer with visible light. Here, a range of new Cu7S4/MxSy (M=Cd, Ni, and Mn) JAJs are designed/synthesized via a cation-exchange route using Cu7S4 hexagonal nanodisks as templates. All Cu7S4/MxSy JAJs show apparently-enhanced photocatalytic H2O2 evolution compared to Cu7S4 in pure water. Notably, optimized Cu7S4/CdS (CCS) JAJ exhibits the outstanding H2O2 evolution rate (2.93 mmol g−1 h−1) in benzyl alcohol aqueous solution, due to the following factors: i) NIR light-impelled plasmonic energy upconversion induced H2O2 evolution, revealed by ultrafast transient absorption spectroscopy; ii) visible-light-driven direct Z-scheme charge migration, confirmed by in situ X-ray photoelectron spectroscopy. Besides, three different reaction pathways for H2O2 evolution are disclosed by in situ electron spin resonance spectroscopy and quenching experiments. Finally, CCS JAJ also exhibits super-high rates on H2 and benzaldehyde co-generation using visible-NIR light or NIR light. This work highlights the significance of atomic-scale interface engineering for solar-to-chemical conversion.
dc.description.statementofresponsibilityMeijun Guo, Amin Talebian-Kiakalaieh, Bingquan Xia, Yiyang Hu, Hongjun Chen, Jingrun Ran, and Shi-Zhang Qiao
dc.identifier.citationAdvanced Functional Materials, 2023; 33(46):1-10
dc.identifier.doi10.1002/adfm.202304912
dc.identifier.issn1616-301X
dc.identifier.issn1616-3028
dc.identifier.orcidGuo, M. [0000-0002-7974-5165]
dc.identifier.orcidQiao, S.Z. [0000-0002-1220-1761] [0000-0002-4568-8422]
dc.identifier.urihttps://hdl.handle.net/2440/140321
dc.language.isoen
dc.publisherWiley
dc.relation.granthttp://purl.org/au-research/grants/arc/FL170100154
dc.relation.granthttp://purl.org/au-research/grants/arc/DE200100629
dc.relation.granthttp://purl.org/au-research/grants/arc/DP22102596
dc.relation.granthttp://purl.org/au-research/grants/arc/LP210301397
dc.relation.granthttp://purl.org/au-research/grants/arc/CE230100032
dc.rights© 2023 Wiley-VCH GmbH
dc.source.urihttps://doi.org/10.1002/adfm.202304912
dc.subjectCu7S4/MxSy; direct Z-scheme photocatalysis; H2O2 evolution; janus atomic junctions; plasmonic energy upconversion
dc.titleCu₇S₄/MxSy (M=Cd, Ni, and Mn) Janus Atomic Junctions for Plasmonic Energy Upconversion Boosted Multi-Functional Photocatalysis
dc.title.alternativeCu7S4/MxSy (M=Cd, Ni, and Mn) Janus Atomic Junctions for Plasmonic Energy Upconversion Boosted Multi-Functional Photocatalysis
dc.typeJournal article
pubs.publication-statusPublished

Files