Green synthesis of three-dimensional hybrid N-doped ORR electro-catalysts derived from apricot sap

Files

hdl_111636.pdf (2.5 MB)
  (Published version)

Date

2018

Authors

Karunagaran, R.
Coghlan, C.
Shearer, C.
Tran, D.
Gulati, K.
Tung, T.
Doonan, C.
Losic, D.

Editors

Advisors

Journal Title

Journal ISSN

Volume Title

Type:

Journal article

Citation

Materials, 2018; 11(2):205-1-205-1616

Statement of Responsibility

Ramesh Karunagaran, Campbell Coghlan, Cameron Shearer, Diana Tran, Karan Gulati, Tran Thanh Tung, Christian Doonan, and Dusan Losic

Conference Name

Abstract

Rapid depletion of fossil fuel and increased energy demand has initiated a need for an alternative energy source to cater for the growing energy demand. Fuel cells are an enabling technology for the conversion of sustainable energy carriers (e.g., renewable hydrogen or bio-gas) into electrical power and heat. However, the hazardous raw materials and complicated experimental procedures used to produce electro-catalysts for the oxygen reduction reaction (ORR) in fuel cells has been a concern for the effective implementation of these catalysts. Therefore, environmentally friendly and low-cost oxygen reduction electro-catalysts synthesised from natural products are considered as an attractive alternative to currently used synthetic materials involving hazardous chemicals and waste. Herein, we describe a unique integrated oxygen reduction three-dimensional composite catalyst containing both nitrogen-doped carbon fibers (N-CF) and carbon microspheres (N-CMS) synthesised from apricot sap from an apricot tree. The synthesis was carried out via three-step process, including apricot sap resin preparation, hydrothermal treatment, and pyrolysis with a nitrogen precursor. The nitrogen-doped electro-catalysts synthesised were characterised by SEM, TEM, XRD, Raman, and BET techniques followed by electro-chemical testing for ORR catalysis activity. The obtained catalyst material shows high catalytic activity for ORR in the basic medium by facilitating the reaction via a four-electron transfer mechanism.

School/Discipline

Dissertation Note

Provenance

Description

Access Status

Rights

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

License

Call number

Persistent link to this record