Efficient surface modulation of single-crystalline Na₂Ti₃O₇ nanotube arrays with Ti³⁺ self-doping toward superior sodium storage

dc.contributor.authorLiu, J.
dc.contributor.authorWang, Z.
dc.contributor.authorLu, Z.
dc.contributor.authorZhang, L.
dc.contributor.authorXie, F.
dc.contributor.authorVasileff, A.
dc.contributor.authorQiao, S.-Z.
dc.date.issued2019
dc.description.abstractAlthough Na2Ti3O7-based anodes have been widely investigated in sodium-ion batteries (SIBs), their Na+ storage properties especially high-rate capability and long-term cycling durability are far from practical application, because of their intrinsic low conductivity and unsatisfied Na+ diffusion resistance. Here, we report the surface engineering of Na2Ti3O7 nanotube arrays grown in situ on Ti foil through a hydrothermal method and subsequent NH3-assisted calcination. Benefiting from the effective surface modification, the as-derived free-standing electrode possesses highly crystalline surface with favorable Na+ diffusion kinetics and self-incorporation of abundant Ti3+ for improved electronic conductivity. These features enable the electrode to achieve remarkable reversible capacity (237.9 mAh g–1), ultra-high rate capability (88.5 mAh g–1 at 100 C = 17.7 A g–1), and excellent cycling stability (92.32% capacity retention at 50 C after 5000 cycles), which are superior to the counterpart without surface modification, as well as almost all Na2Ti3O7-based anode materials reported so far for SIBs. The outstanding electrochemical performance demonstrates the feasibility of proposed surface modulation in designing more efficient electrode materials for energy storage.
dc.description.statementofresponsibilityJinlong Liu, Zhenyu Wang, Zhouguang Lu, Lei Zhang, Fangxi Xie, Anthony Vasileff and Shi-Zhang Qiao
dc.identifier.citationACS Materials Letters, 2019; 1(4):389-398
dc.identifier.doi10.1021/acsmaterialslett.9b00213
dc.identifier.issn2639-4979
dc.identifier.issn2639-4979
dc.identifier.orcidLiu, J. [0000-0002-4726-0972]
dc.identifier.orcidXie, F. [0000-0002-6133-6558]
dc.identifier.orcidVasileff, A. [0000-0003-1945-7740]
dc.identifier.orcidQiao, S.-Z. [0000-0002-1220-1761] [0000-0002-4568-8422]
dc.identifier.urihttps://hdl.handle.net/2440/132238
dc.language.isoen
dc.publisherAmerican Chemical Society
dc.relation.granthttp://purl.org/au-research/grants/arc/LP160100927
dc.relation.granthttp://purl.org/au-research/grants/arc/DE150101234
dc.relation.granthttp://purl.org/au-research/grants/arc/DP170104464,
dc.relation.granthttp://purl.org/au-research/grants/arc/DP160104866,
dc.relation.granthttp://purl.org/au-research/grants/arc/DP140104062
dc.relation.granthttp://purl.org/au-research/grants/arc/FL170100154
dc.rights© 2019 American Chemical Society
dc.source.urihttps://doi.org/10.1021/acsmaterialslett.9b00213
dc.subjectNanotubes, diffusion; electrodes; transmission electron microscopy; electrical conductivity
dc.titleEfficient surface modulation of single-crystalline Na₂Ti₃O₇ nanotube arrays with Ti³⁺ self-doping toward superior sodium storage
dc.title.alternativeEfficient surface modulation of single-crystalline Na(2)Ti(3)O(7) nanotube arrays with Ti(3+) self-doping toward superior sodium storage
dc.typeJournal article
pubs.publication-statusPublished

Files