Lasing from Narrow Bandwidth Light-Emitting One-Dimensional Nanoporous Photonic Crystals

dc.contributor.authorGunenthiran, S.
dc.contributor.authorWang, J.
dc.contributor.authorZhao, W.
dc.contributor.authorLaw, S.
dc.contributor.authorLim, S.Y.
dc.contributor.authorMcInnes, J.A.
dc.contributor.authorEbendorff-Heidepriem, H.
dc.contributor.authorAbell, A.D.
dc.contributor.authorAlwahabi, Z.T.
dc.contributor.authorSantos, A.
dc.date.issued2022
dc.description.abstractNanoporous anodic alumina (NAA) is an emerging platform material for photonics and light-based applications. However, demonstrations of narrow bandwidth lasing emissions from this optical material remain limited. Here, we demonstrate that narrow bandwidth NAA-based gradient-index filters (NAAGIFs) can be optically engineered to achieve high-quality visible lasing. NAA-GIFs fabricated by a modified sinusoidal pulse anodization approach feature a well-resolved, intense, high-quality photonic stopband (PSB). The inner surface of NAA-GIFs is functionalized with rhodamine B (RhoB) fluorophore molecules through micellar solubilization of sodium dodecyl sulfate (SDS) surfactant. Systematic variation of the ratio of SDS and RhoB enables the precise engineering of the light-emitting functional layer to maximize light-driven lasing associated with the slow photon effect at the red edge of NAA-GIFs’ PSB. It is found that the optimal surfactant-to-fluorophore ratio, namely, 20 mM SDS to 0.81 mM RhoB, results in a strong, polarized lasing at ∼612 nm. This lasing was characterized by a remarkably high-quality−gain product of ∼536, a Purcell factor of 2.2, a lasing threshold of ∼0.15 mJ per pulse, and a high-quality polarization ratio of ∼0.7. Our results benefit the advancement of the NAA-based lasing technology for a variety of photonic disciplines such as sensing, tweezing, light harvesting, and photodetection.
dc.description.statementofresponsibilitySatyathiran Gunenthiran, Juan Wang, Wanxia Zhao, Cheryl Suwen Law, Siew Yee Lim, Jamie A. McInnes, Heike Ebendorff-Heidepriem, Andrew D. Abell, Zeyad T. Alwahabi, and Abel Santos
dc.identifier.citationACS Photonics, 2022; 9(4):1226-1239
dc.identifier.doi10.1021/acsphotonics.1c01689
dc.identifier.issn2330-4022
dc.identifier.issn2330-4022
dc.identifier.orcidGunenthiran, S. [0000-0002-8505-6104]
dc.identifier.orcidZhao, W. [0000-0001-5916-9669]
dc.identifier.orcidLaw, S. [0000-0002-3276-8052]
dc.identifier.orcidLim, S.Y. [0000-0002-5677-9039]
dc.identifier.orcidMcInnes, J.A. [0000-0003-4006-9398]
dc.identifier.orcidEbendorff-Heidepriem, H. [0000-0002-4877-7770]
dc.identifier.orcidAbell, A.D. [0000-0002-0604-2629]
dc.identifier.orcidAlwahabi, Z.T. [0000-0003-4831-7798]
dc.identifier.orcidSantos, A. [0000-0002-5081-5684]
dc.identifier.urihttps://hdl.handle.net/2440/135587
dc.language.isoen
dc.publisherAmerican Chemical Society (ACS)
dc.relation.granthttp://purl.org/au-research/grants/arc/DP200102614
dc.rights© 2022 American Chemical Society.
dc.source.urihttps://doi.org/10.1021/acsphotonics.1c01689
dc.subjectlaser emission; nanoporous photonic crystal; fluorophore functionalization; photonic engineering
dc.titleLasing from Narrow Bandwidth Light-Emitting One-Dimensional Nanoporous Photonic Crystals
dc.typeJournal article
pubs.publication-statusPublished

Files