Resampling-based multiple testing for microarray data analysis
Date
2003
Authors
Ge, Y.
Dudoit, S.
Speed, T.
Glonek, G.
Solomon, P.
Grant, G.
Kendziorski, C.
Maindonald, J.
Storey, J.
Westfall, P.
Editors
Advisors
Journal Title
Journal ISSN
Volume Title
Type:
Journal article
Citation
Test, 2003; 12(1):1-77
Statement of Responsibility
Yongchao Ge, Sandrine Dudoit, Terence P. Speed (with discussions by Gary Glonek and Patty Solomon, Gregory R. Grant, Christina M. Kendzlorski, John H. Maindonald, John D. Storey, Peter H. Westfall)
Conference Name
Abstract
The burgeoning field of genomics has revived interest in multiple testing procedures by raising new methodological and computational challenges. For example, microarray experiments generate large multiplicity problems in which thousands of hypotheses are tested simultaneously. Westfall and Young (1993) propose resampling-basedp-value adjustment procedures which are highly relevant to microarray experiments. This article discusses different criteria for error control in resampling-based multiple testing, including (a) the family wise error rate of West-fall and Young (1993) and (b) the false discovery rate developed by Benjamini and Hochberg (1995), both from a frequentist viewpoint; and (c) the positive false discovery rate of Storey (2002a), which has a Bayesian motivation. We also introduce our recently developed fast algorithm for implementing the minP adjustment to control family-wise error rate. Adjustedp-values for different approaches are applied to gene expression data from two recently published microarray studies. The properties of these procedures for multiple testing are compared.
School/Discipline
Dissertation Note
Provenance
Description
Access Status
Rights
Copyright status unknown