Optimal recursive estimation of raw data
dc.contributor.author | Torokhti, A. | |
dc.contributor.author | Howlett, P. | |
dc.contributor.author | Pearce, C. | |
dc.date.issued | 2005 | |
dc.description | The original publication is available at www.springerlink.com | |
dc.description.abstract | We present a new approach to the optimal estimation of random vectors. The approach is based on a combination of a specific iterative procedure and the solution of a best approximation problem with a polynomial approximant. We show that the combination of these new techniques allow us to build a computationally effective and flexible estimator. The strict justification of the proposed technique is provided. | |
dc.description.statementofresponsibility | Anatoli Torokhti, Phil Howlett and Charles Pearce | |
dc.identifier.citation | Annals of Operations Research, 2005; 133(1-3):285-302 | |
dc.identifier.doi | 10.1007/s10479-004-5039-5 | |
dc.identifier.issn | 0254-5330 | |
dc.identifier.issn | 1572-9338 | |
dc.identifier.uri | http://hdl.handle.net/2440/17833 | |
dc.language.iso | en | |
dc.publisher | Kluwer Academic Publishers | |
dc.source.uri | http://www.springerlink.com/content/gg5p715557g16342/ | |
dc.subject | error minimization | |
dc.subject | stochastic vector | |
dc.subject | optimal estimate | |
dc.title | Optimal recursive estimation of raw data | |
dc.type | Journal article | |
pubs.publication-status | Published |