Flock generalized quadrangles and tetradic sets of elliptic quadrics of PG(3, q)

dc.contributor.authorBarwick, S.
dc.contributor.authorBrown, M.
dc.contributor.authorPenttila, T.
dc.date.issued2006
dc.description.abstractA flock of a quadratic cone of PG(3,q) is a partition of the non-vertex points into plane sections. It was shown by Thas in 1987 that to such flocks correspond generalized quadrangles of order (q2,q), previously constructed algebraically by Kantor (q odd) and Payne (q even). In 1999, Thas gave a geometrical construction of the generalized quadrangle from the flock via a particular set of elliptic quadrics in PG(3,q). In this paper we characterise these sets of elliptic quadrics by a simple property, construct the generalized quadrangle synthetically from the properties of the set and strengthen the main theorem of Thas 1999.
dc.description.statementofresponsibilityS.G. Barwick, Matthew R. Brown and Tim Penttila
dc.description.urihttp://www.elsevier.com/wps/find/journaldescription.cws_home/622862/description#description
dc.identifier.citationJournal of combinatorial theory. Series A, 2006; 113(2):273-290
dc.identifier.doi10.1016/j.jcta.2005.03.004
dc.identifier.issn0097-3165
dc.identifier.orcidBarwick, S. [0000-0001-9492-0323]
dc.identifier.urihttp://hdl.handle.net/2440/24107
dc.language.isoen
dc.publisherAcademic Press Inc Elsevier Science
dc.source.urihttps://doi.org/10.1016/j.jcta.2005.03.004
dc.subjectFlock
dc.subjectGeneralized quadrangle
dc.subjectElliptic quadric
dc.titleFlock generalized quadrangles and tetradic sets of elliptic quadrics of PG(3, q)
dc.typeJournal article
pubs.publication-statusPublished

Files