The Regulation of Anion Loading to the Maize Root Xylem

Date

2005

Authors

Gilliham, M.
Tester, M.

Editors

Advisors

Journal Title

Journal ISSN

Volume Title

Type:

Journal article

Citation

Plant Physiology, 2005; 137(3):819-828

Statement of Responsibility

Conference Name

Abstract

The regulation of anion loading to the shoot in maize (Zea mays) was investigated via an electrophysiological characterization of ion conductances in protoplasts isolated from the root stele. Two distinct anion conductances were identified. In protoplasts from well-watered plants, Z. mays xylem-parenchyma quickly-activating anion conductance (Zm-X-QUAC) was the most prevalent conductance and is likely to load the majority of NOâ â » and Clâ » ions to the xylem in nonstressed conditions. Z. mays xylem-parenchyma inwardly-rectifying anion conductance was found at a lower frequency in protoplasts from well-watered plants than Zm-X-QUAC, was much smaller in magnitude in all observed conditions, and is unlikely to be such a major pathway for anion loading into the xylem. Activity of Z. mays xylem-parenchyma inwardly-rectifying anion conductance increased following a water stress prior to protoplast isolation, but the activity of the putative major anion-loading pathway, Zm-X-QUAC, decreased. Addition of abscisic acid (ABA) to protoplasts from well-watered plants also inhibited Zm-X-QUAC activity within minutes, as did a high free Ca²⠺ concentration in the pipette. ABA was also seen to activate a Ca²⠺-permeable conductance (Z. mays xylem-parenchyma hyperpolarization activated cation conductance) in protoplasts from well-watered plants. It is postulated that the inhibition of anion loading into the xylem (an important response to a water stress) due to down-regulation of Zm-X-QUAC activity is mediated by an ABA-mediated rise in free cytosolic Ca²⠺.

School/Discipline

Dissertation Note

Provenance

Description

Access Status

Rights

© 2005 American Society of Plant Biologists

License

Grant ID

Call number

Persistent link to this record