Optimal linear perfect hash families with small parameters

dc.contributor.authorBarwick, S.
dc.contributor.authorJackson, W.
dc.contributor.authorQuinn, C.
dc.date.issued2004
dc.descriptionThe definitive version may be found at www.wiley.com
dc.description.abstractA linear (qd, q, t)-perfect hash family of size s consists of a vector space V of order qd over a field F of order q and a sequence Φ1; . . . ; Φs of linear functions from V to F with the following property: for all t subsets X ⊆ V, there exists i ∈ {1; . . . ; s} such that Φi is injective when restricted to F. A linear (qd, q, t)--perfect hash family of minimal size d(t - 1) is said to be optimal. In this paper, we prove that optimal linear (qd, q, t)-perfect hash families exist only for q = 11 and for all prime powers q > 13 and we give constructions for these values of q.
dc.description.statementofresponsibilityS. G. Barwick, Wen-Ai Jackson and Catherine T. Quinn
dc.identifier.citationJournal of Combinatorial Designs, 2004; 12(5):311-324
dc.identifier.doi10.1002/jcd.20010
dc.identifier.issn1063-8539
dc.identifier.issn1520-6610
dc.identifier.orcidBarwick, S. [0000-0001-9492-0323]
dc.identifier.orcidJackson, W. [0000-0002-0894-0916]
dc.identifier.urihttp://hdl.handle.net/2440/3584
dc.language.isoen
dc.publisherJohn Wiley & Sons Inc
dc.rightsCopyright © 2004 John Wiley & Sons, Inc. All Rights Reserved.
dc.source.urihttp://www3.interscience.wiley.com/cgi-bin/abstract/107640520
dc.subjectperfect hash families
dc.subjectfinite projective geometry
dc.titleOptimal linear perfect hash families with small parameters
dc.typeJournal article
pubs.publication-statusPublished

Files