A characterisation of the planes meeting a non-singular quadric of PG(4,Q) in a conic

dc.contributor.authorButler, D.
dc.contributor.departmentDivision of the Deputy Vice-Chancellor and Vice-President (Academic)
dc.date.issued2013
dc.description.abstractBy counting and geometric arguments, we provide a combinatorial characterisation of the planes meeting the non-singular quadric of PG(4,q) in a conic. A characterisation of the tangents and generators of this quadric when q is odd has been proved by de Resmini [15], and we give an alternative using our result. © 2013 János Bolyai Mathematical Society and Springer-Verlag Berlin Heidelberg.
dc.description.statementofresponsibilityDavid K. Butler
dc.identifier.citationCombinatorica: an international journal on combinatorics and the theory of computing, 2013; 33(2):161-179
dc.identifier.doi10.1007/s00493-013-2402-7
dc.identifier.issn0209-9683
dc.identifier.issn1439-6912
dc.identifier.urihttp://hdl.handle.net/2440/79816
dc.language.isoen
dc.publisherJanos Bolyai Mathematical Soc
dc.rights© 2013 Janos Bolyai Mathematical Society and Springer-Verlag Berlin Heidelberg
dc.source.urihttps://doi.org/10.1007/s00493-013-2402-7
dc.titleA characterisation of the planes meeting a non-singular quadric of PG(4,Q) in a conic
dc.typeJournal article
pubs.publication-statusPublished

Files