South Australian Immunogenomics Cancer Institute (SAIGENCI) publications
Permanent URI for this collection
Browse
Recent Submissions
Item Open Access Ultrastructural analysis of prostate cancer tissue provides insights into androgen-dependent adaptations to membrane contact site establishment(Frontiers Media, 2023) Butler, L.M.; Evergren, E.Membrane trafficking and organelle contact sites are important for regulating cell metabolism and survival; processes often deregulated in cancer. Prostate cancer is the second leading cause of cancer-related death in men in the developed world. While early-stage disease is curable by surgery or radiotherapy there is an unmet need to identify prognostic biomarkers, markers to treatment response and new therapeutic targets in intermediate-late stage disease. This study explored the morphology of organelles and membrane contact sites in tumor tissue from normal, low and intermediate histological grade groups. The morphology of organelles in secretory prostate epithelial cells; including Golgi apparatus, ER, lysosomes; was similar in prostate tissue samples across a range of Gleason scores. Mitochondrial morphology was not dramatically altered, but the number of membrane contacts with the ER notably increased with disease progression. A three-fold increase of tight mitochondria-ER membrane contact sites was observed in the intermediate Gleason score group compared to normal tissue. To investigate whether these changes were concurrent with an increased androgen signaling in the tissue, we investigated whether an anti-androgen used in the clinic to treat advanced prostate cancer (enzalutamide) could reverse the phenotype. Patient-derived explant tissues with an intermediate Gleason score were cultured ex vivo in the presence or absence of enzalutamide and the number of ER-mitochondria contacts were quantified for each matched pair of tissues. Enzalutamide treated tissue showed a significant reduction in the number and length of mitochondria-ER contact sites, suggesting a novel androgen-dependent regulation of these membrane contact sites. This study provides evidence for the first time that prostate epithelial cells undergo adaptations in membrane contact sites between mitochondria and the ER during prostate cancer progression. These adaptations are androgen-dependent and provide evidence for a novel hormone-regulated mechanism that support establishment and extension of MAMs. Future studies will determine whether these changes are required to maintain pro-proliferative signaling and metabolic changes that support prostate cancer cell viability.Item Open Access Targeting hyaluronan-mediated motility receptor (HMMR) enhances response to androgen receptor signalling inhibitors in prostate cancer(Springer Nature, 2023) Hinneh, J.A.; Gillis, J.L.; Mah, C.Y.; Irani, S.; Shrestha, R.K.; Ryan, N.K.; Atsushi, E.; Nassar, Z.D.; Lynn, D.J.; Selth, L.A.; Kato, M.; Centenera, M.M.; Butler, L.M.BACKGROUND: Resistance to androgen receptor signalling inhibitors (ARSIs) represents a major clinical challenge in prostate cancer. We previously demonstrated that the ARSI enzalutamide inhibits only a subset of all AR-regulated genes, and hypothesise that the unaffected gene networks represent potential targets for therapeutic intervention. This study identified the hyaluronan-mediated motility receptor (HMMR) as a survival factor in prostate cancer and investigated its potential as a co-target for overcoming resistance to ARSIs. METHODS: RNA-seq, RT-qPCR and Western Blot were used to evaluate the regulation of HMMR by AR and ARSIs. HMMR inhibition was achieved via siRNA knockdown or pharmacological inhibition using 4-methylumbelliferone (4-MU) in prostate cancer cell lines, a mouse xenograft model and patient-derived explants (PDEs). RESULTS: HMMR was an AR-regulated factor that was unaffected by ARSIs. Genetic (siRNA) or pharmacological (4-MU) inhibition of HMMR significantly suppressed growth and induced apoptosis in hormone-sensitive and enzalutamide-resistant models of prostate cancer. Mechanistically, 4-MU inhibited AR nuclear translocation, AR protein expression and subsequent downstream AR signalling. 4-MU enhanced the growth-suppressive effects of 3 different ARSIs in vitro and, in combination with enzalutamide, restricted proliferation of prostate cancer cells in vivo and in PDEs. CONCLUSION: Co-targeting HMMR and AR represents an effective strategy for improving response to ARSIs.Item Open Access Interplay between the EMT transcription factors ZEB1 and ZEB2 regulates hematopoietic stem and progenitor cell differentiation and hematopoietic lineage fidelity(Public Library of Science (PLoS), 2021) Wang, J.; Farkas, C.; Benyoucef, A.; Carmichael, C.; Haigh, K.; Wong, N.; Huylebroeck, D.; Stemmler, M.P.; Brabletz, S.; Brabletz, T.; Nefzger, C.M.; Goossens, S.; Berx, G.; Polo, J.M.; Haigh, J.J.; Eaves, C.J.The ZEB2 transcription factor has been demonstrated to play important roles in hematopoiesis and leukemic transformation. ZEB1 is a close family member of ZEB2 but has remained more enigmatic concerning its roles in hematopoiesis. Here, we show using conditional loss-of-function approaches and bone marrow (BM) reconstitution experiments that ZEB1 plays a cell-autonomous role in hematopoietic lineage differentiation, particularly as a positive regulator of monocyte development in addition to its previously reported important role in T-cell differentiation. Analysis of existing single-cell (sc) RNA sequencing (RNA-seq) data of early hematopoiesis has revealed distinctive expression differences between Zeb1 and Zeb2 in hematopoietic stem and progenitor cell (HSPC) differentiation, with Zeb2 being more highly and broadly expressed than Zeb1 except at a key transition point (short-term HSC [ST-HSC]➔MPP1), whereby Zeb1 appears to be the dominantly expressed family member. Inducible genetic inactivation of both Zeb1 and Zeb2 using a tamoxifen-inducible Cre-mediated approach leads to acute BM failure at this transition point with increased long-term and short-term hematopoietic stem cell numbers and an accompanying decrease in all hematopoietic lineage differentiation. Bioinformatics analysis of RNA-seq data has revealed that ZEB2 acts predominantly as a transcriptional repressor involved in restraining mature hematopoietic lineage gene expression programs from being expressed too early in HSPCs. ZEB1 appears to fine-tune this repressive role during hematopoiesis to ensure hematopoietic lineage fidelity. Analysis of Rosa26 locus-based transgenic models has revealed that Zeb1 as well as Zeb2 cDNA-based overexpression within the hematopoietic system can drive extramedullary hematopoiesis/splenomegaly and enhance monocyte development. Finally, inactivation of Zeb2 alone or Zeb1/2 together was found to enhance survival in secondary MLL-AF9 acute myeloid leukemia (AML) models attesting to the oncogenic role of ZEB1/2 in AML.Item Metadata only Cytotoxicity-related gene expression and chromatin accessibility define a subset of CD4+ T cells that mark progression to type 1 diabetes.(American Diabetes Association, 2022) Bediaga, N.G.; Garnham, A.L.; Naselli, G.; Bandala-Sanchez, E.; Stone, N.L.; Cobb, J.; Harbison, J.E.; Wentworth, J.M.; Ziegler, A.G.; Couper, J.J.; Smyth, G.K.; Harrison, L.C.Type 1 diabetes in children is heralded by a preclinical phase defined by circulating autoantibodies to pancreatic islet antigens. How islet autoimmunity is initiated and then progresses to clinical diabetes remains poorly understood. Only one study has reported gene expression in specific immune cells of children at risk associated with progression to islet autoimmunity. We analyzed gene expression with RNA sequencing in CD4+ and CD8+ T cells, natural killer (NK) cells, and B cells, and chromatin accessibility by assay for transposase-accessible chromatin sequencing (ATAC-seq) in CD4+ T cells, in five genetically at risk children with islet autoantibodies who progressed to diabetes over a median of 3 years (“progressors”) compared with five children matched for sex, age, and HLA-DR who had not progressed (“nonprogressors”). In progressors, differentially expressed genes (DEGs) were largely confined to CD4+ T cells and enriched for cytotoxicity-related genes/pathways. Several top-ranked DEGs were validated in a semi-independent cohort of 13 progressors and 11 nonprogressors. Flow cytometry confirmed that progression was associated with expansion of CD4+ cells with a cytotoxic phenotype. By ATAC-seq, progression was associated with reconfiguration of regulatory chromatin regions in CD4+ cells, some linked to differentially expressed cytotoxicity-related genes. Our findings suggest that cytotoxic CD4+ T cells play a role in promoting progression to type 1 diabetes.Item Open Access Paraspeckle subnuclear bodies depend on dynamic heterodimerisation of DBHS RNA-binding proteins via their structured domains(Elsevier BV, 2022) Lee, P.W.; Marshall, A.C.; Knott, G.J.; Kobelke, S.; Martelotto, L.; Cho, E.; McMillan, P.J.; Lee, M.; Bond, C.S.; Fox, A.H.RNA-binding proteins of the DBHS (Drosophila Behavior Human Splicing) family, NONO, SFPQ, and PSPC1 have numerous roles in genome stability and transcriptional and posttranscriptional regulation. Critical to DBHS activity is their recruitment to distinct subnuclear locations, for example, paraspeckle condensates, where DBHS proteins bind to the long noncoding RNA NEAT1 in the first essential step in paraspeckle formation. To carry out their diverse roles, DBHS proteins form homodimers and heterodimers, but how this dimerization influences DBHS localization and function is unknown. Here, we present an inducible GFP-NONO stable cell line and use it for live-cell 3D-structured illumination microscopy, revealing paraspeckles with dynamic, twisted elongated structures. Using siRNA knockdowns, we show these labeled paraspeckles consist of GFP-NONO/endogenous SFPQ dimers and that GFP-NONO localization to paraspeckles depends on endogenous SFPQ. Using purified proteins, we confirm that partner swapping between NONO and SFPQ occurs readily in vitro. Crystallographic analysis of the NONOSFPQ heterodimer reveals conformational differences to the other DBHS dimer structures, which may contribute to partner preference, RNA specificity, and subnuclear localization. Thus overall, our study suggests heterodimer partner availability is crucial for NONO subnuclear distribution and helps explain the complexity of both DBHS protein and paraspeckle dynamics through imaging and structural approaches.Item Metadata only Isolating Nuclei From Frozen Human Heart Tissue for Single-Nucleus RNA Sequencing(Wiley, 2022) Safabakhsh, S.; Sar, F.; Martelotto, L.; Haegert, A.; Singhera, G.; Hanson, P.; Parker, J.; Collins, C.; Rohani, L.; Laksman, Z.Heart disease is the leading cause of global morbidity and mortality. This is in part because, despite an abundance of animal and in vitro models, it has been a challenge to date to study human heart tissue with sufficient depth and resolution to develop disease-modifying therapies for common cardiac conditions. Single-nucleus RNA sequencing (snRNA-seq) has emerged as a powerful tool capable of analyzing cellular function and signaling in health and disease, and has already contributed to significant advances in areas such as oncology and hematology. Employing snRNA-seq technology on flash-frozen human tissue has the potential to unlock novel disease mechanisms and pathways in any organ. Studying the human heart using snRNA-seq is a key priority for the field of cardiovascular sciences; however, progress to date has been slowed by numerous barriers. One key challenge is the fact that the human heart is very resistant to shearing and stress, making tissue dissociation and nuclear isolation difficult. Here, we describe a tissue dissociation method allowing the efficient and cost-effective isolation of high-quality nuclei from flash-frozen human heart tissue collected in surgical operating rooms. Our protocol addresses the challenge of nuclear isolation from human hearts, enables snRNA-seq of the human heart, and paves the way for an improved understanding of the human heart in health and disease. Ultimately, this will be key to uncovering signaling pathways and networks amenable to therapeutic intervention and the development of novel biomarkers and disease-modifying therapies.Item Open Access Aberrant protein expression of Appl1, Sortilin and Syndecan-1 during the biological progression of prostate cancer(Elsevier BV, 2023) Martini, C.; Logan, J.M.; Sorvina, A.; Gordon, C.; Beck, A.R.; S-Y Ung, B.; Caruso, M.C.; Moore, C.; Hocking, A.; Johnson, I.R.D.; Li, K.L.; Karageorgos, L.; Hopkins, A.M.; Esterman, A.J.; Huzzell, C.; Brooks, R.D.; Lazniewska, J.; Hickey, S.M.; Bader, C.; Parkinson-Lawrence, E.; et al.Diagnosis and assessment of patients with prostate cancer is dependent on accurate interpretation and grading of histopathology. However, morphology does not necessarily reflect the complex biological changes occurring in prostate cancer disease progression, and current biomarkers have demonstrated limited clinical utility in patient assessment. This study aimed to develop biomarkers that accurately define prostate cancer biology by distinguishing specific pathological features that enable reliable interpretation of pathology for accurate Gleason grading of patients. Online gene expression databases were interrogated and a pathogenic pathway for prostate cancer was identified. The protein expression of key genes in the pathway, including adaptor protein containing a pleckstrin homology (PH) domain, phosphotyrosine-binding (PTB) domain, and leucine zipper motif 1 (Appl1), Sortilin and Syndecan-1, was examined by immunohistochemistry (IHC) in a pilot study of 29 patients with prostate cancer, using monoclonal antibodies designed against unique epitopes. Appl1, Sortilin, and Syndecan-1 expression was first assessed in a tissue microarray cohort of 112 patient samples, demonstrating that the monoclonal antibodies clearly illustrate gland morphologies. To determine the impact of a novel IHC-assisted interpretation (the utility of Appl1, Sortilin, and Syndecan-1 labelling as a panel) of Gleason grading, versus standard haematoxylin and eosin (H&E) Gleason grade assignment, a radical prostatectomy sample cohort comprising 114 patients was assessed. In comparison to H&E, the utility of the biomarker panel reduced subjectivity in interpretation of prostate cancer tissue morphology and improved the reliability of pathology assessment, resulting in Gleason grade redistribution for 41% of patient samples. Importantly, for equivocal IHC-assisted labelling and H&E staining results, the cancer morphology interpretation could be more accurately applied upon re-review of the H&E tissue sections. This study addresses a key issue in the field of prostate cancer pathology by presenting a novel combination of three biomarkers and has the potential to transform clinical pathology practice by standardising the interpretation of the tissue morphology.Item Open Access The role of RHAMM in cancer: Exposing novel therapeutic vulnerabilities(Frontiers Media, 2022) Hinneh, J.A.; Gillis, J.L.; Moore, N.L.; Butler, L.M.; Centenera, M.M.Receptor for hyaluronic acid-mediated motility (RHAMM) is a cell surface receptor for hyaluronic acid that is critical for cell migration and a cell cycle protein involved in microtubule assembly and stability. These functions of RHAMM are required for cellular stress responses and cell cycle progression but are also exploited by tumor cells for malignant progression and metastasis. RHAMM is often overexpressed in tumors and is an independent adverse prognostic factor for a number of cancers such as breast and prostate. Interestingly, pharmacological or genetic inhibition of RHAMM in vitro and in vivo ablates tumor invasiveness and metastatic spread, implicating RHAMM as a potential therapeutic target to restrict tumor growth and improve patient survival. However, RHAMM's pro-tumor activity is dependent on its subcellular distribution, which complicates the design of RHAMM-directed therapies. An alternative approach is to identify downstream signaling pathways that mediate RHAMM-promoted tumor aggressiveness. Herein, we discuss the pro-tumoral roles of RHAMM and elucidate the corresponding regulators and signaling pathways mediating RHAMM downstream events, with a specific focus on strategies to target the RHAMM signaling network in cancer cells.Item Open Access Unravelling Prostate Cancer Heterogeneity Using Spatial Approaches to Lipidomics and Transcriptomics(MDPI AG, 2022) Mutuku, S.M.; Spotbeen, X.; Trim, P.J.; Snel, M.F.; Butler, L.M.; Swinnen, J.V.Due to advances in the detection and management of prostate cancer over the past 20 years, most cases of localised disease are now potentially curable by surgery or radiotherapy, or amenable to active surveillance without treatment. However, this has given rise to a new dilemma for disease management; the inability to distinguish indolent from lethal, aggressive forms of prostate cancer, leading to substantial overtreatment of some patients and delayed intervention for others. Driving this uncertainty is the critical deficit of novel targets for systemic therapy and of validated biomarkers that can inform treatment decision-making and to select and monitor therapy. In part, this lack of progress reflects the inherent challenge of undertaking target and biomarker discovery in clinical prostate tumours, which are cellularly heterogeneous and multifocal, necessitating the use of spatial analytical approaches. In this review, the principles of mass spectrometry-based lipid imaging and complementary gene-based spatial omics technologies, their application to prostate cancer and recent advancements in these technologies are considered. We put in perspective studies that describe spatially-resolved lipid maps and metabolic genes that are associated with prostate tumours compared to benign tissue and increased risk of disease progression, with the aim of evaluating the future implementation of spatial lipidomics and complementary transcriptomics for prognostication, target identification and treatment decision-making for prostate cancer.Item Open Access Human prefrontal cortex gene regulatory dynamics from gestation to adulthood at single-cell resolution(Elsevier, 2022) Herring, C.A.; Simmons, R.K.; Freytag, S.; Poppe, D.; Moffet, J.J.D.; Pflueger, J.; Buckberry, S.; Vargas-Landin, D.B.; Clément, O.; Echeverría, E.G.; Sutton, G.J.; Alvarez-Franco, A.; Hou, R.; Pflueger, C.; McDonald, K.; Polo, J.M.; Forrest, A.R.R.; Nowak, A.K.; Voineagu, I.; Martelotto, L.; et al.Human brain development is underpinned by cellular and molecular reconfigurations continuing into the third decade of life. To reveal cell dynamics orchestrating neural maturation, we profiled human prefrontal cortex gene expression and chromatin accessibility at single-cell resolution from gestation to adulthood. Integrative analyses define the dynamic trajectories of each cell type, revealing major gene expression reconfiguration at the prenatal-to-postnatal transition in all cell types followed by continuous reconfiguration into adulthood and identifying regulatory networks guiding cellular developmental programs, states, and functions. We uncover links between expression dynamics and developmental milestones, characterize the diverse timing of when cells acquire adult-like states, and identify molecular convergence from distinct developmental origins. We further reveal cellular dynamics and their regulators implicated in neurological disorders. Finally, using this reference, we benchmark cell identities and maturation states in organoid models. Together, this captures the dynamic regulatory landscape of human cortical development.Item Metadata only Characterization of Mammalian Regulatory Complexes at Single-Locus Resolution Using TINC(Humana, 2022) Knaupp, A.S.; Schittenhelm, R.B.; Polo, J.M.; Horsfield, J.; Marsman, J.In mammalian cells, multiprotein complexes form at specific genomic regulatory elements (REs) to control gene expression, which in turn is ultimately responsible for cellular identity. Consequently, insight into the molecular composition of these regulatory complexes is of major importance for our understanding of any physiological or pathological cellular state or transition. However, it remains extremely difficult to identify the protein complex(es) assembled at a specific RE in the mammalian genome using conventional approaches. We therefore developed a novel single locus isolation technique based on Transcription Activator-Like Effector (TALE) proteins termed TALE-mediated isolation of nuclear chromatin (TINC). When coupled with high-resolution mass spectrometry, TINC enables the identification and characterization of protein complexes formed at any RE of interest. Using the Nanog promoter in mouse embryonic stem cells as proof of concept, this chapter describes in detail the novel TINC methodology as well as subsequent mass spectrometric considerations.Item Metadata only Type 2 immune polarization is associated with cardiopulmonary disease in preterm infants(American Association for the Advancement of Science, 2022) Lao, J.C.; Bui, C.B.; Pang, M.A.; Cho, S.X.; Rudloff, I.; Elgass, K.; Schröder, J.; Maksimenko, A.; Mangan, N.E.; Starkey, M.R.; Skuza, E.M.; Sun, Y.B.Y.; Beker, F.; Collins, C.L.; Kamlin, O.F.; König, K.; Malhotra, A.; Tan, K.; Theda, C.; Young, M.J.; et al.Postnatal maturation of the immune system is poorly understood, as is its impact on illnesses afflicting term or preterm infants, such as bronchopulmonary dysplasia (BPD) and BPD-associated pulmonary hypertension. These are both cardiopulmonary inflammatory diseases that cause substantial mortality and morbidity with high treatment costs. Here, we characterized blood samples collected from 51 preterm infants longitudinally at five time points, 20 healthy term infants at birth and age 3 to 16 weeks, and 5 healthy adults. We observed strong associations between type 2 immune polarization in circulating CD3+CD4+ T cells and cardiopulmonary illness, with odds ratios up to 24. Maternal magnesium sulfate therapy, delayed hepatitis B vaccination, and increasing fetal, but not maternal, chorioamnionitis severity were associated with attenuated type 2 polarization. Blocking type 2 mediators such as interleukin-4 (IL-4), IL-5, IL-13, or signal transducer and activator of transcription 6 (STAT6) in murine neonatal cardiopulmonary disease in vivo prevented changes in cell type composition, increases in IL-1β and IL-13, and losses of pulmonary capillaries, but not gains in larger vessels. Thereby, type 2 blockade ameliorated lung inflammation, protected alveolar and vascular integrity, and confirmed the pathological impact of type 2 cytokines and STAT6. In-depth flow cytometry and single-cell transcriptomics of mouse lungs further revealed complex associations between immune polarization and cardiopulmonary disease. Thus, this work advances knowledge on developmental immunology and its impact on early life disease and identifies multiple therapeutic approaches that may relieve inflammation-driven suffering in the youngest patients.Item Open Access Modulation of Plasma Lipidomic Profiles in Metastatic Castration-Resistant Prostate Cancer by Simvastatin(MDPI AG, 2022) Mak, B.; Lin, H.-M.; Duong, T.; Mahon, K.L.; Joshua, A.M.; Stockler, M.R.; Gurney, H.; Parnis, F.; Zhang, A.; Scheinberg, T.; Wittert, G.; Butler, L.M.; Sullivan, D.; Hoy, A.J.; Meikle, P.J.; Horvath, L.G.Elevated circulating sphingolipids are associated with shorter overall survival and therapeutic resistance in metastatic castration-resistant prostate cancer (mCRPC), suggesting that perturbations in sphingolipid metabolism promotes prostate cancer growth. This study assessed whether addition of simvastatin to standard treatment for mCRPC can modify a poor prognostic circulating lipidomic profile represented by a validated 3-lipid signature (3LS). Men with mCRPC (n = 27) who were not on a lipid-lowering agent, were given simvastatin for 12 weeks (40 mg orally, once daily) with commencement of standard treatment. Lipidomic profiling was performed on their plasma sampled at baseline and after 12 weeks of treatment. Only 11 men had the poor prognostic 3LS at baseline, of whom five (45%) did not retain the 3LS after simvastatin treatment (expected conversion rate with standard treatment = 19%). At baseline, the plasma profiles of men with the 3LS displayed higher levels (p < 0.05) of sphingolipids (ceramides, hexosylceramides and sphingomyelins) than those of men without the 3LS. These plasma sphingolipids were reduced after statin treatment in men who lost the 3LS (mean decrease: 23–52%, p < 0.05), but not in men with persistent 3LS, and were independent of changes to plasma cholesterol, LDL-C or triacylglycerol. In conclusion, simvastatin in addition to standard treatment can modify the poor prognostic circulating lipidomic profile in mCRPC into a more favourable profile at twice the expected conversion rate.Item Metadata only Establishment of human induced trophoblast stem cells via reprogramming of fibroblasts(Springer Nature, 2022) Tan, J.P.; Liu, X.; Polo, J.M.During early mammalian embryonic development, trophoblast cells play an essential role in establishing cell-cell interactions at the maternal-fetal interface to ensure a successful pregnancy. In a recent study, we showed that human fibroblasts can be reprogrammed into induced trophoblast stem (iTS) cells by transcription factor-mediated nuclear reprogramming using the Yamanaka factors OCT4, KLF4, SOX2 and c-MYC (OKSM) and a selection of TS cell culture conditions. The derivation of TS cells from human blastocysts or first-trimester placenta can be limited by difficulties in obtaining adequate material as well as ethical implications. By contrast, the described approach allows the generation of iTS cells from the adult cells of individuals with diverse genetic backgrounds, which are readily accessible to many laboratories around the world. Here we describe a step-by-step protocol for the generation and establishment of human iTS cells directly from dermal fibroblasts using a non-integrative reprogramming method. The protocol consists of four main sections: (1) recovery of cryopreserved human dermal fibroblasts, (2) somatic cell reprogramming, (3) passaging of reprogramming intermediates and (4) derivation of iTS cell cultures followed by routine maintenance of iTS cells. These iTS cell lines can be established in 2-3 weeks and cultured long term over 50 passages. We also discuss several characterization methods that can be performed to validate the iTS cells derived using this approach. Our protocol allows researchers to generate patient-specific iTS cells to interrogate the trophoblast and placenta biology as well as their interactions with embryonic cells in health and diseases.Item Open Access Comparative roadmaps of reprogramming and oncogenic transformation identify Bcl11b and Atoh8 as broad regulators of cellular plasticity(Springer Nature, 2022) Huyghe, A.; Furlan, G.; Schroeder, J.; Cascales, E.; Trajkova, A.; Ruel, M.; Stüder, F.; Larcombe, M.; Yang Sun, Y.B.; Mugnier, F.; De Matteo, L.; Baygin, A.; Wang, J.; Yu, Y.; Rama, N.; Gibert, B.; Kielbassa, J.; Tonon, L.; Wajda, P.; Gadot, N.; et al.Coordinated changes of cellular plasticity and identity are critical for pluripotent reprogramming and oncogenic transformation. However, the sequences of events that orchestrate these intermingled modifications have never been comparatively dissected. Here, we deconvolute the cellular trajectories of reprogramming (via Oct4/Sox2/Klf4/c-Myc) and transformation (via Ras/c-Myc) at the single-cell resolution and reveal how the two processes intersect before they bifurcate. This approach led us to identify the transcription factor Bcl11b as a broad-range regulator of cell fate changes, as well as a pertinent marker to capture early cellular intermediates that emerge simultaneously during reprogramming and transformation. Multiomics characterization of these intermediates unveiled a c-Myc/Atoh8/Sfrp1 regulatory axis that constrains reprogramming, transformation and transdifferentiation. Mechanistically, we found that Atoh8 restrains cellular plasticity, independent of cellular identity, by binding a specific enhancer network. This study provides insights into the partitioned control of cellular plasticity and identity for both regenerative and cancer biology.Item Open Access Intestinal stem cell aging signature reveals a reprogramming strategy to enhance regenerative potential(Springer Science and Business Media LLC, 2022) Nefzger, C.M.; Jardé, T.; Srivastava, A.; Schroeder, J.; Rossello, F.J.; Horvay, K.; Prasko, M.; Paynter, J.M.; Chen, J.; Weng, C.-F.; Sun, Y.B.Y.; Liu, X.; Chan, E.; Deshpande, N.; Chen, X.; Li, Y.J.; Pflueger, J.; Engel, R.M.; Knaupp, A.S.; Tsyganov, K.; et al.The impact of aging on intestinal stem cells (ISCs) has not been fully elucidated. In this study, we identified widespread epigenetic and transcriptional alterations in old ISCs. Using a reprogramming algorithm, we identified a set of key transcription factors (Egr1, Irf1, FosB) that drives molecular and functional differences between old and young states. Overall, by dissecting the molecular signature of aged ISCs, our study identified transcription factors that enhance the regenerative capacity of ISCs.