Please use this identifier to cite or link to this item:
Scopus Web of Science® Altmetric
Type: Journal article
Title: Parrondo's paradox
Author: Harmer, G.
Abbott, D.
Citation: Statistical Science: a review journal, 1999; 14(2):206-213
Publisher: Institute of Mathematical Sciences
Issue Date: 1999
ISSN: 0883-4237
Statement of
G. P. Harmer and D. Abbott
Abstract: We introduce Parrondo’s paradox that involves games of chance. We consider two fair gambling games, A and B, both of which can be made to have a losing expectation by changing a biasing parameter ε . When the two games are played in any alternating order, a winning expectation is produced, even though A and B are now losing games when played individually. This strikingly counter-intuitive result is a consequence of discrete-time Markov chains and we develop a heuristic explanation of the phenomenon in terms of a Brownian ratchet model. As well as having possible applications in electronic signal processing, we suggest important applications in a wide range of physical processes, biological models, genetic models and sociological models. Its impact on stock market models is also an interesting open question. © 1999 Institute of Mathematical Statistics.
DOI: 10.1214/ss/1009212247
Published version:
Appears in Collections:Aurora harvest 6
Electrical and Electronic Engineering publications

Files in This Item:
There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.