Protein-induced modifications in crystal morphology of a hydrogen-bonded organic framework
Date
2023
Authors
Flint, K.L.
Evans, J.D.
Carraro, F.
Renner, S.
Linder-Patton, O.M.
Amenitsch, H.
Falconer, R.J.
White, N.G.
Sumby, C.J.
Falcaro, P.
Editors
Advisors
Journal Title
Journal ISSN
Volume Title
Type:
Journal article
Citation
Journal of Materials Chemistry A, 2023; 11(42):23026-23033
Statement of Responsibility
Kate L. Flint, Jack D. Evans, Francesco Carraro, Simon Renner, Oliver M. Linder-Patton, Heinz Amenitsch, Robert J. Falconer, Nicholas G. White, Christopher J. Sumby, Paolo Falcaro and Christian J. Doonan
Conference Name
Abstract
In this work, we studied the encapsulation of a range of proteins in a hydrogen-bonded organic framework (HOF) comprised of a tetraamidinium cation and diazobenzene-based dicarboxylate anion. We explore the use of external stimuli: light and temperature to modulate HOF crystal growth and size. In particular, we found photo-isomerisation can be used to control the concentration of the trans-azobenzene building block that contributes to HOF formation. When HOF growth was slowed sufficiently, deformation of the crystals and ultimately multicrystal aggregates were observed in the presence of some proteins. We propose that the extent of crystal deformation, consistent with better protein association, may be governed by differences in the type and strength of interactions between proteins and the surface of the growing HOF crystals.
School/Discipline
Dissertation Note
Provenance
Description
Access Status
Rights
© The Royal Society of Chemistry 2023